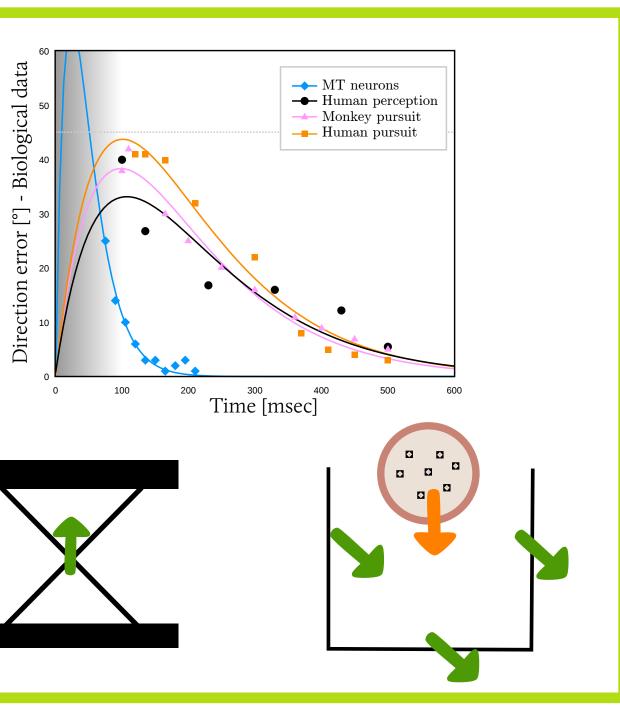


We propose a dynamical model of 2D motion integration where diffusion is modulated by luminance information. It incorporates feedforward, feedback, and inhibitive lateral connections and is inspired by the neural architecture and dynamics of motion processing cortical areas in the primate (V1, V2, and MT). The first aspect of our contribution is to propose a new anisotropic integration model, offering a competitive alternative to less parsimonious models based on a large set of cortical layers. A second aspect that is often ignored is that biological computation of global motion is highly dynamical. Our model can also explain several properties of MT neurons regarding the dynamics of selective motion integration, a fundamental property of object motion disambiguation and segmentation.

Goals

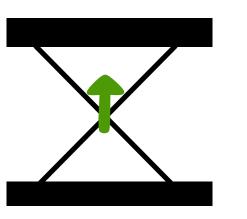
\sim Integrate 2D motion

→ Reproduce perception Berzhanskaya et al. (2007) → Reproduce dynamics



\sim With a bio-inspired model

 \rightarrow Cortical layers, feedback, . . . Bayerl & Neumann (2004)



Model overview

\sim Cortical areas

- → Activity model
- → Retinotopic neurons
- → Distributed velocity

 $p_i(t, x, v)$

\sim Multiple interactions

→ Integration via feedforward from VI to MT

 p_1

(V1)

- \rightarrow Selection via local inhibitive connections
- → Propagation via feedback from MT to VI

\sim Luminance-gated diffusion

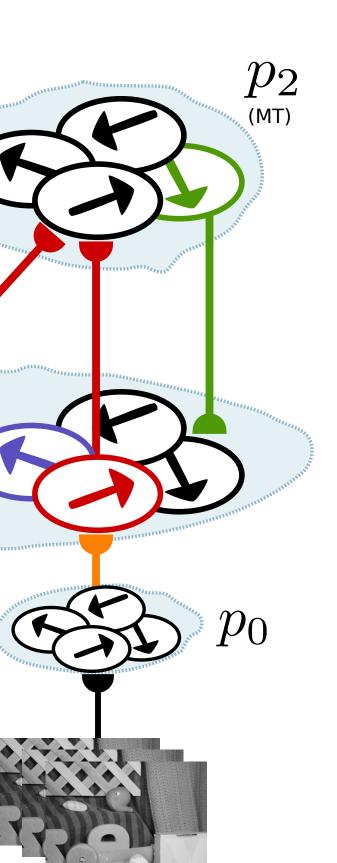
- → Feedforward integration is anisotropic
- \rightarrow Luminance (form) information modulates integration

Bibliography **Baeck & Sajda (2005)** Neural Computation, 5(8) Bayerl & Neumann (2004) Neural Computation, 16

Berzhanskaya (2007) Spatial Vision, 20(4) Bowns (1996) Vision Research, 36 Huang et al. (2007) Neuron, 53

A dynamical neural model of motion integration É. Tlapale[†], P. Kornprobst[†], G.S. Masson[‡]

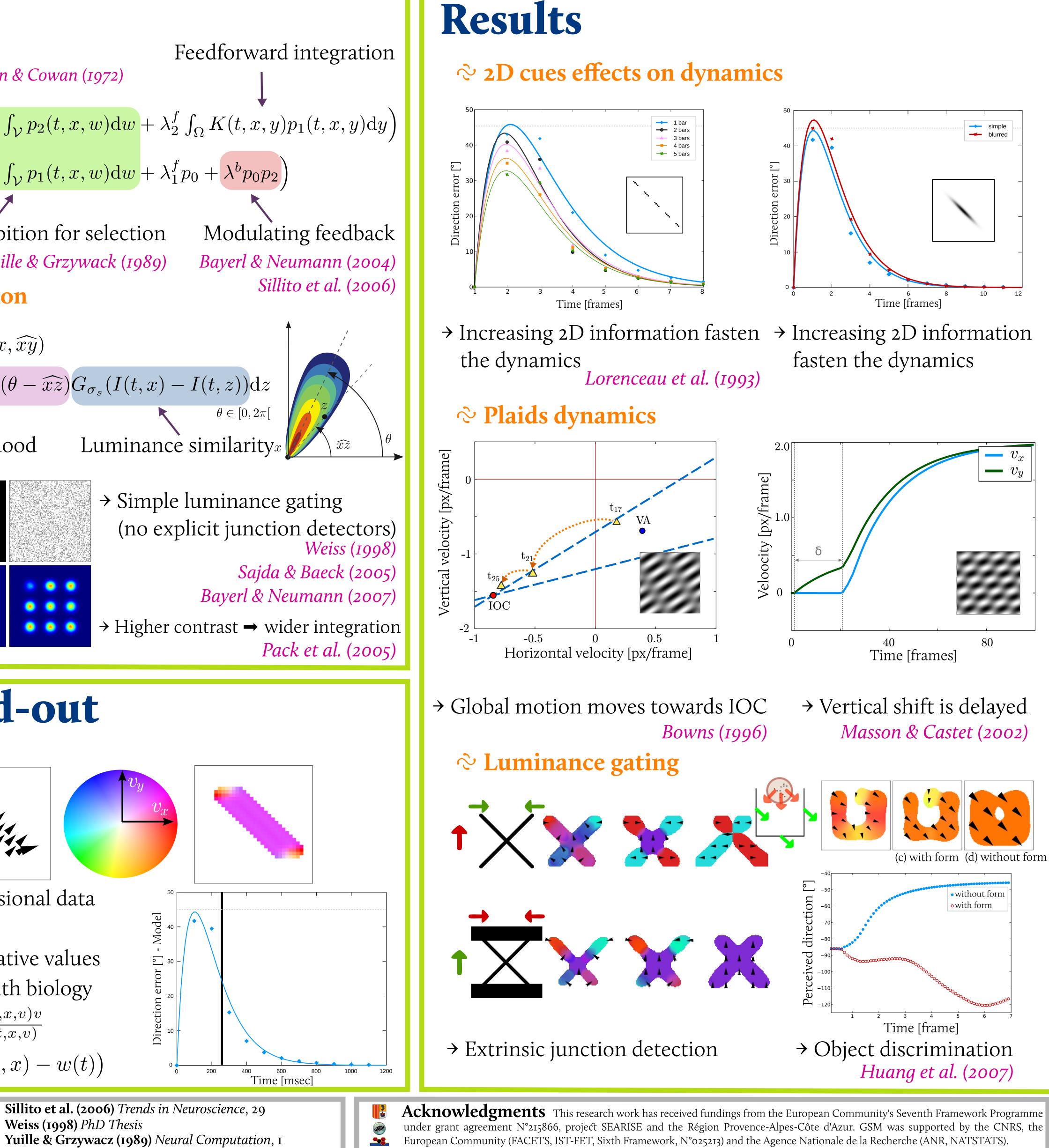
[†] NeuroMathComp, INRIA Sophia Antipolis Méditerranée, France — [‡] DyVA, INCM, CNRS, France — Contact: Emilien.Tlapale@sophia.inria.fr



(r) → Simplify multi-dimensional data \sim Biological read-outs → Fetch simpler quantitative values \rightarrow Allows comparison with biology $m_i(t,x) = \frac{\sum_{v \in \mathcal{V}} p_i(t,x,v)v}{\sum_{v \in \mathcal{V}} p_i(t,x,v)}$ $\frac{\mathrm{d}w}{\mathrm{d}t} = \lambda \left(\sum_{x \in \Omega} m_2(t, x) - w(t) \right)$ Lorenceau et al. (1993) Vision Research, 33 Masson & Castet (2002) J Neuroscience, 22 Pack et al. (2005) J Neurophysiol, 93

Formalism \sim Neural fields Wilson & Cowan (1972) $\frac{\partial p_2}{\partial t} = -\lambda_2 p_2 + S_2 \left(-\lambda_2^l G_{\sigma_2^l} * \int_{\mathcal{V}} p_2(t, x, w) \mathrm{d}w + \lambda_2^f \int_{\Omega} K(t, x, y) p_1(t, x, y) \mathrm{d}y \right)$ $\frac{\partial p_1}{\partial t} = -\lambda_1 p_1 + S_1 \left(-\lambda_1^l G_{\sigma_1^l} * \int_{\mathcal{V}} p_1(t, x, w) \mathrm{d}w + \lambda_1^f p_0 + \lambda^b p_0 p_2 \right)$ Lateral inhibition for selection Decay Yuille & Grzywack (1989) \sim Luminance modulation $K(t, x, y) = G_{\sigma_2^f}(|x - y|)\phi(t, x, \widehat{xy})$ $\phi(t, x, \theta) = \int_{\Omega} G_{\sigma_x}(x - z) G_{\sigma_\theta}(\theta - \widehat{xz}) G_{\sigma_s}(I(t, x) - I(t, z)) dz$ Directional neighborhood • • • • • • • • Defining read-out \sim Color-coded results

Weiss (1998) PhD Thesis



http://www-sop.inria.fr/neuromathcomp