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Abstract

This thesis addresses the study of motion integration in the primate. Based on

anatomical and functional knowledge of two cortical areas involved in motion

perception, namely v1 and mt, we explain various perceptual and oculo-motor

responses found in the literature. First, we build a recurrent model of motion

integration where a minimal number of cortical interactions are assumed. Pro-

posing a simple readout mechanism, we are able to reproduce not only motion

perception but also the dynamics of smooth pursuit eye movements on various

line figures and gratings viewed through different apertures. Second, following

perceptual studies concerning motion integration and physiological studies of re-

ceptive fields, we construct another dynamical model where motion information

is gated by form cues. To this end, we postulate that the visual cortex takes ad-

vantage of luminance smoothness in order to gate motion diffusion. Such an ele-

mentary diffusion mechanism allows to solve various contextual problems where

extrinsic junctions should be eliminated, without relying on complex junction de-

tectors or depth computation. Finally, we rewrite the initial dynamical model into

the neural fields formalism in order to mathematically analyse its properties. We

incorporate the multiplicative feedback term into the formalism, and prove the

existence and uniqueness of the solution. To generalise the comparison against

visual performance, we propose a new evaluation methodology based on human

visual performance and design a database of image sequences taken from biology

and psychophysics literature. Indeed, offering proper evaluation methodology is

essential to continue progress in modelling the neural mechanisms involved in

motion processing. To conclude, we investigate the performances of our neural

fields model by comparison against state of the art computer vision approaches

and sequences. We find that, despite its original objective, this model gives results

comparable to recent computer vision approaches of motion estimation.

keywords bio-inspiredmodels · dynamics · luminance gating ·modelling ·motion

integration · neural fields · perception
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Résumé

Dans cette thèse, nous étudions l'intégration du mouvement chez le primate. En

se basant sur les connaissances actuelles concernant l'anatomie et les fonctions

de deux aires corticales impliquées dans le mouvement, v1 et mt, nous expliquons

un certain nombre de réponses perceptuelles et oculo-motrices rapportées dans la

littérature. Tout d'abord, nous construisons unmodèle récurrent d'intégration du

mouvement se basant sur un nombre minimal d'hypothèses concernant les inter-

actions corticales. Enproposant un simplemécanismede « lecture », nous sommes

capable de reproduire non seulement la perception, mais aussi les dynamiques

oculaires de poursuite sur des stimuli de type ligne ou grille. De là, en se bas-

ant des études psychophysiques sur l'intégration du mouvement et sur des études

physiologique concernant les champs récepteurs, nous construisons un deuxième

modèle dynamique dans lequel l'information concernant le mouvement est di-

rigée par un signal de forme. Pour cela, nous postulons que le cortex visuel utilise la

régularité de la luminance pour diriger la diffusion dumouvement. Un tel mécan-

isme élémentaire de diffusion permet de résoudre des problèmes contextuels, dans

lesquels les jonctions extrinsèques doivent être ignorées, sans avoir besoin d'util-

iser desmécanismes plus complexes tels que les détecteurs de jonctions ou le calcul

de profondeur. Enfin, nous reformulons le modèle initial dans le cadre du form-

alisme des champs neuronaux afin d'analyser mathématiquement ses propriétés.

Nous incorporons la rétroaction multiplicative dans le formalisme et prouvons

l'existence et l'unicité de la solution. Afin de généraliser les comparaisons aux per-

formances du système visuel, nous proposons une nouvelleméthodologie d'évalu-

ation basée sur les performances du système visuel humain, accompagnée d'une

série de vidéos issues de la littérature biologique et psychophysique. En effet, une

méthodologie d'évaluation adaptée nous semble essentielle afin de continuer les

progrès en modélisation des mécanismes neuraux impliqués dans le traitement

du mouvement. Pour conclure, nous analysons les performances de notre modèle

d'intégration dumouvement en l'appliquant à des problèmes classiques et récents

issus de la vision par ordinateur. En dépit de son objectif initial, notre modèle est

capable de donner des résultats comparables aux récentes approches proposées en

vision par ordinateur au niveau de l'estimation du mouvement.

mots-clés champs neuronaux · dynamiques · luminance ·modèles bio-inspirés ·
modélisation · intégration du mouvement · perception
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Introduction

motion and the brain

Perception

Perceivingmotion is being able to see that an object moves and

to know in which direction and at which speed.

The famous case ofM.P. described byZihl, vonCramon and

Mai266 allowed a better understanding of motion perception.

Indeed a cardiovascular accident damaged the cortical areas in-

volved with motion perception in this patient. From that point

in time M.P. has been unable to achieve simple acts such as

filling a cup of tea or crossing a street.While still perceiving the

level of the liquid or the position of cars, M.P. cannot estimate

the overflowing time or distinguish between stopped andmov-

ing cars.

The state of M.P., known as akinetopsia, did not decrease

her abilities to recognise shapes or faces, and her colour percep-

tion remained intact. Such a disability suggests that motion in-

formation flows through a specific pathway in the brain.* This * At least a part of motion information.
Recognition of biological motion or
structure from motion seem not
affected by those damages.235

division between different visual pathways is confirmed by the

existence of other similar conditions such as cerebral achromatop-

sia, colour blindness originating from brain malfunction.263

Yet divisions between visual pathways, as well as between

visual and non-visual pathways, are porous. For instance colour

and luminance information191,177 as well as auditory motion213

can improvemotion perception. An extreme case of this poros-

ity is synesthesia in which two more senses are coupled.97

Understanding themechanisms involved inmotionpercep-

tion is the first step towards a hope for cure in patients with

damages to motion areas.
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Eye movements

Partly due to the peculiar nature of our retina, in which the

central part—the fovea—is the only precise and colour-aware

region, our eyes are constantly in motion. Various type of eye

movements exist, such as saccades to centre the projection of

an object on the retina, the vestibulo-ocular reflex to compensate

head movements, or smooth pursuit to follow moving objects.

Smooth pursuit movements are tightly linked to motion

perception. As it is the case in perception, following an object

requires to know in which direction and at which speed it is

moving. It has been shown that both pursuit and perception

share commonmechanismofmotion integration. Since eyemove-

ments are fundamentally dynamical, they give us essential in-

formation on the involved mechanisms.
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Fig. 1 Some possible modelling
levels in visual neuroscience.

Physiology

In the case of patient M.P., damages occurred in the cortical

area mt—also named v5. This cortical area happen to be spe-

cialised in motion integration,69,5,264 and is involved both in

motion perception44 and smooth pursuit.140,118 The area mt is

only one of the numerous cortical areas of the visual system.

Each cortical area is tuned for specific features—colour, mo-

tion, disparity, etc.—and is composed of large number of inter-

connected neurons. Various techniques were developed to ex-

plore the function and anatomy of the visual cortex, and those

techniques allow us to understand how the processing of visual

information works.

Modelling

Dayan andAbbott64 classifymodels in three categories depend-

ing on which of the what, how or why questions they answer.

Descriptive models (or phenomenological models) aim at accur-

ately describing large amount of experimental data. Mechan-

istic models address the question of how systems operates in

a bottom-up approach. Interpretive models (or optimal models)

try to understand the behaviour of a system with a top-down

approach focusing on the functional role of a phenomenon.
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Mechanisticmodels link experimental recordings across differ-

ent levels to form a single system (see Fig. 1). For instance the

model of Hodgkin and Huxley,109 describes the ionic interac-

tions inside the giant axon of the squid to explain the emission

and propagation of action potentials, also called spikes.

In this thesis we propose mechanistic models linking the

neural activity inside the cortical areas processing motion, and

perception. Several models were proposed to explain motion

perception based on the anatomy of the cortical areas v1 and

mt.208,24,32 With various granularity of details, they manage to

explain some important experiments recorded in psychophys-

ics.

thesis organisation

The manuscript is divided in three parts. In Part I we review

the experimental data concerning motion at perceptual, beha-

vioural and physiological levels. In Part II we propose different

versions of a recurrent dynamical architecture reproducing the

dynamics of motion integration. In Part IIIwe describe an eval-

uation methodology for motion estimation based on human

visual performance, and we evaluate our neural fields model

against computer vision performance.

seeing motion Part I

Perception Chapter 1

We begin by presenting the fundamental problems of motion

integration in the case of motion perception. In particular we

put the aperture problem as the centre of our study in various

line-segments and gratings configurations.

Tracking Chapter 2

Smoothpursuit andmotionperception are two intertwinedpro-

cesses of the visual system.We discuss the similarities between

pursuit and perception in the case of the aperture problem and

showhow thedynamics of eyemovements can reveal themech-

anisms underlying motion integration.

Thesis organisation 7



Physiology Chapter 3

To understand howmotion perception and smooth pursuit are

controlled, we detail the physiology of the visual cortex focus-

ing on two areas, v1 and mt. Indeed, v1 is the major entry point

of the visual cortex, and mt is a cortical area shown to be in-

volved with both perception and pursuit.

Models Chapter 4

Several models of motion perception and smooth pursuit are

described in the literature. We selected three models of mo-

tion perception describing the connectivity between v1 andmt.

Those models served as inspiration for our work.

modelling motion Part II

Model architecture Chapter 5

Based on current knowledge on visual system interactions, we

define a two-layer model architecture for motion integration.

Each layer corresponds to the activity of neuronal populations

in cortical areas v1 and mt. Lateral, feed-forward and feedback

connections are proposed to mimic cortical interactions. We

also propose a simple readout mechanism able to control dir-

ection and speed of smooth pursuit.

Dynamics of integration Chapter 6

Wepropose amodel able to explain not onlymotion perception

on a large range of stimuli, but also to reproduce the ocular dy-

namics of smooth pursuit. The model postulates the existence

of a small number of neural mechanisms and we justify them

with anatomical data and neural recordings of the two cortical

areas v1 and mt.

Luminance gating Chapter 7

Then we introduce a novel mechanism of motion integration

gated by luminance information coming from another cortical

area, v2. This contextual information allows the visual system

to better analyse the visual scene by considering that different

8 introduction



objects have different luminance. It also explains how contex-

tual information can influence motion integration.

Neural fields Chapter 8

Finally we study the mathematical and computational proper-

ties of the proposed mechanism. To this end we fit our model

into the neural fields formalism.254,7 This rewriting allows us to

prove the existence and uniqueness of the solution given by our

model.We also study the computational implications of the se-

lection mechanism and of lateral diffusion.

evaluating models Part III

Comparison to the visual system Chapter 9

Generalising our comparisons,wedesign a benchmark formod-

els of motion perception and motion integration. We consider

several stimuli and suggest evaluation criteria to compare the

output ofmotion integrationmodelswith behavioural and per-

ceptual results.

We divided our benchmark into two kinds of evaluations.

The static evaluation only considers the final percept in-

duced by a stimulus. This evaluation mostly use psychophys-

ical results and can be applied not only to the output of mo-

tionmodels but also to computer vision approaches. Indeed the

wide range of spatial scales or frequencies used in psychophys-

ics is able to challenge several single-scale computer vision ap-

proaches.

The dynamic evaluation considers the time course of mo-

tion integration, and is thus linked to smooth pursuit or per-

ception dynamics.

Comparison to computer vision Chapter 10

In another field of study, understandingmotion perception can

improve the design of efficient robotic applications. Indeed the

human visual system outperforms computer vision methods

in a wide range of applications, despite the rapidly increasing

hardware capabilities. We show that even our model of motion

Thesis organisation 9



perception give results in the range of current computer vision

algorithms.

appendices Part IV

European project searise Chapter a

In the first appendix we describe our work in the context of the

European project searise. The goal of searise was to developed

a trinocular active cognitive visual system, Smart-Eyes, for de-

tection, tracking and categorisation of salient events and be-

haviours. In this context our main contribution was to design

motion integration algorithms and implement them using gp-

gpu technologies.

Reading with low-vision Chapter b

In this appendix we propose a reading aid software for low vision

patients. This work started as a postgraduate fellowship in a collab-

oration with Éric Castet and Jean-Baptiste Bernard from the cnrs.

It was extended during the phd thesis, although not being its main

objective.

Million of people suffer from low-vision, a disability tightly

linked to age. In cases such as age-related macular degenera-

tion (amd), the visual acuity decreases, and patients read more

easily with uncluttered large characters. In cases such as glauc-

oma, the periphery of the visual field is impaired, decreasing

the ability to navigate in complex documents.

In this appendix we propose a system facilitating reading

for low-vision patients by analysing complex documents in or-

der to ease navigation and allow custom text display. To valid-

ate our approach, 26 subjects compared our software to exist-

ing reading aid under the supervision of orthoptists. Promising

results validate our approachwhich allows patients to continue

reading, in comparisonwithmore autonomous systems such as

voice synthesisers.
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Part 1 Motion integration in the primate

1 Perceiving motion 15

2 Tracking objects 23

3 Neural architecture 27

4 Existing models 35

Sharing common neural substrate, motion perception and eye

movements are two intertwined processes of the primate visual

system. We start by presenting the fundamental problems of

motion integration and their relation to human perception in

Chapter 1. We investigate the solution of the aperture problem

and the discrimination between intrinsic and extrinsic junc-

tions and conclude the chapter with temporal dynamics in per-

ception.

This transition todynamics allows comparisonbetweenper-

ception and one class of eye movements, smooth pursuit, and

we investigate the links between the two in Chapter 2. As the

objective of smooth pursuit is to track moving objects, a direc-

tion need to be computed and the initial direction error reveals

the inner mechanisms underlying the tracking.

Deeper into the brain, anatomical data and physiological

recordings divulges the machinery behind motion integration,

providing the chemical and cellular substrate of the various com-

putations hinted by perception and behaviour. In Chapter 3 we

discuss the visual information stream in the primate visual sys-

tem and its relation with motion perception and smooth pur-

suit.

We concludeourmotion integrationpanorama inChapter 4

with the description of several models of motion computation.

The architecture of the described models follows the observa-

tions made on the visual cortex and focus on motion percep-

tion. The models we propose in the second part of this thesis

are inspired by those work.
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Chapter 1 Perceiving motion

In this chapter we introduce motion integration from a perceptual

perspective.We start by describing the fundamental aperture prob-

lem in Section 1.1. Then we review some classical mechanisms and

terminology in Section 1.2. In Section 1.3 we discuss contextual in-

fluences and cross-modality. We end the chapter in Section 1.4 by

showing that perception is not stable but changes in time.

1.1 the aperture problem

Natural scenes presentmany sources of ambiguities, that are to

be solved in order to extract reliable information to control be-

haviour. One example of such ambiguity is the aperture problem

in motion perception, described by Wallach.243

When a translating bar is viewed behind an occludermask-

ing its extremities, its translationdirection cannot be recovered.

Indeed an infinite number of constrained translations are pos-

sible. In Fig. 1.1 we show such a translating bar in the first row,

at three different times. The second and last rows show two

different translations coherent with the stimulus.

Fig. 1.1 Aperture problem in mo-
tion detection. When an edge is seen
through an aperture masking its
extremities, its motion direction is
perceived as orthogonal to its orient-
ation, a choice between the infinity of
possible motion directions.

Interestingly when only the central part of the bar is visible,
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the perceived motion is the translation orthogonal to the bar

orientation.

The aperture problem is fundamental in the visual cortex.

Indeed it appears at several levels of the visual system, including

at the oculo-motor (see Chapter 2) and at the neuronal levels

(see Chapter 3). More generally the aperture problem can be

found in non-motion visual processing such as stereopsis.160

1.2 motion integration

In order to compute the global motion of an object embedded

in a complex surrounding, the visual system takes local motion

estimates as input. As a consequence, it must deal with numer-

ous 1d features, corresponding to edges and, generally fewer,

2d features such as corners or line-endings. Indeed the 1d fea-

tures—also called 1d cues—only allow to recover the motion

orthogonally to the bar, whereas 2d features—or 2d cues—al-

low to recover the complete 2d motion.

After several decades of intensive research on 2d motion

perception and its neural substrates,152 it is still highly contro-

versial whether or not, and how, the brain uses these different

types of local motion cues to recover the global motion of the

surface of interest.41 We review some classical explanations of

motion integration in the next sections.

1.2.1 1d motion integration

In order to describe visually the computation rules suggested

in the literature, the set of possible velocities can be shown in

their velocity space. In Fig. 1.2 we show some of the possible

velocities occurring at the centre of a bar and represent them

in the associated velocity space. To explain that perception and

ocular responses output the motion orthogonal to the bar ori-

entation, one can postulate the existence of a prior on small

velocities.248

vx

vy

Fig. 1.2 Velocity space repres-
entation. Left: some of the possible
velocities in the aperture problem.
Right: All the possible velocities are
aligned when represented in a velocity
space.

Tounravel the computational rules involved inmotion per-

ceptionmore complex stimuliwere proposed. By increasing the

number of translating bars a grating is generated. The super-

position of two gratings with different orientations is called a

16 perceiving motion



plaid (see Fig. 1.3). Each of the gratings is represented by a line

in the velocity space and perceived as moving in a direction or-

thogonal to its orientation. When both gratings are presented

simultaneously as a plaid pattern, the perceived motion direc-

tion corresponds to the intersection of the lines in the velo-

city space—purely horizontal in the example. This geometrical

solution is named the intersection of constraints (ioc)78 and sev-

eral studies have proposed that the primate visual system uses

a similar computation.2

+ = vx

vy Fig. 1.3 Plaid pattern. Left: The
superposition of two translating
gratings with different orientations is
called a plaid. Right: Superposition of
the associated velocity spaces.

It remains however unclear how the visual system can imple-

ment the ioc rule. Moreover, the fact that perceived direction

doesnot always correspond to the ioc solution, at least for short

stimulus durations,260 has supported alternativemodels. Among

them, the vector average (va) is defined by averaging the gratings

motions. In the plaid presented in Fig. 1.3 the vector average has

the same direction as the ioc, but a slower velocity. By chan-

ging the properties of the gratings separately, one can create

type ii plaids where the motion direction of the ioc and the va

are different.

1.2.2 2d motion integration

As pointed out by Wallach243 a spatial integration of 1d fea-

tures can be used to reconstruct the translation of amoving ob-

ject. But 2d features can also be extracted as their motion seen

through the same aperture size is not ambiguous. In the stim-

uli presented in the previous section, we only considered and

plotted the 1d motion, and ignored 2d features coming from

the edges of the aperture or the gratings intersections.

Fig. 1.4 Cut translating bar.

To investigate the effect of the number of 2d cues on mo-
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tion one can cut a translating bar into smaller ones increases

thenumber of 2d cues (see Fig. 1.4). Lorenceau and colleagues144

investigated the effect of increased 2d cues by displaying trans-

lating bars of different length for a short period of time and ask-

ing the subject to choose amotion direction. Their results show

that increasing the numbers of 2d cues decreases the perceived

direction error.

For certain stimuli such as the barber pole illusion where a

grating is viewed through a rectangular aperture, considering

2d features is fundamental. In Fig. 1.5 we show two identical

gratings behind rectangular apertures with different orienta-

tions. With such configurations, the perceived motion direc-

tion is biased towards the elongated border of the aperture. Yet

a pure 1dmotion integration analysis would consider both con-

figurations as equivalent since the grating motion direction is

the same in both cases.Fig. 1.5 Barber pole illusion. In both
stimuli an identical grating translating
in a diagonal direction (light arrow) is
viewed through a rectangular aperture.
Yet the perceived direction (dark arrow)
depends on the aperture orientation.

From the configurations of the barber pole illusions two

sets of 2d cues arise with directions collinear to the short and

long edges of the aperture.Wallach242 proposed that the greater

number of terminators on the longer borders explains the per-

ceived motion. This corresponds to a higher peak in the velo-

city space representation of Bayesian models.248 Other models

propose theunambiguous information to propagate on the am-

biguous line.108

1.3 contextual integration

1.3.1 Intrinsic versus extrinsic junctions

Moving objects constantlymask andunmask other objects, cre-

ating occlusions. For instance when two squares are translat-

ing, 1d motion cues can be extracted from their edges, and 2d

motion cues canbe extracted from their angles. If the two squares

are overlapping, new2dmotion cues appears as shown inFig. 1.6.

Fig. 1.6 When two squares are
crossing extrinsic junctions appear
at the occlusions (circles) leading to
erroneous 2d signals (small arrows)
.

In such cases the visual system makes certain assumptions

to eliminate 2d features created by the occlusions, and to keep

the veridical 2d features.206 The 2d features to be ignored are

called extrinsic junctions, whereas the true 2d features are called

intrinsic junctions.

18 perceiving motion



In the chopstick illusion presented in Fig. 1.7 two translat-

ing bars are presented. Despite one configuration having oc-

cluders masking the extremities of the bars, both stimuli have

the same set of 1d and 2d features. However the perceived mo-

tion is each case is very different. As such the chopstick illusion

provides an examplewhere puremotion processing is not suffi-

cient to explain the percept. Similarly, adding occluders to the

borders of barber pole stimuli changes the motion percept.

Fig. 1.7 In both stimuli two trans-
lating bars are crossing leading to the
same set of 1d and 2d features. Yet the
two translating bars are perceived as
a single upward moving object when
their extremities are occluded.

To account for perception several proposals model an ex-

plicit junction segregation through features detectors. In their

seminal work Shimojo and colleagues206 suggested t-junctions

to act as monocular depth cues and should thus be classified as

extrinsic. Indeed looking at the content of the circles—the ex-

trinsic junctions—in Fig. 1.6 one can see rotated t created by

the squares borders. Inhibition of t-junctions was confirmed

by Lorenceau and Zago,145 at least for low spatial frequencies

and small stimuli sizes. Several models implement this idea:

Weiss and Adelson mark three-labelled regions as extrinsic;249

Grossberg and Mingolla139,96 implement a t-junction detector

in their facade model; Bayerl and Neumann23 perform a sim-

ilar feature detection but use it in an excitatory way.

1.3.2 Multi-aperture stimuli

The diamond stimuli proposed by Lorenceau and colleagues143

provide an interesting set of experiments to understand the

mechanismsof contextualmotionperception.Their basic stim-

ulus is a diamond viewed behind four apertures that only show

the edges. Depending on the orientation of the apertures, the

ioc and the va solutions are not always compatible with the

true diamond motion (see Fig. 1.8)
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Fig. 1.8 If a translating diamond
is viewed behind four rectangular
apertures showing only its edges,
ioc and va solutions are not always
compatible with the true translation
(big arrow).143

In the experiments of Lorenceau and Shiffrar143, a diamond

is translating along a circular path. Perception of amoving rigid

object is stronger when the aperture is clearly delimited (as in

Fig. 1.8), for configurations for which the ioc solution is valid,

when the stimulus is presented in the periphery of the visual

field, or when the terminators noise is increased.

A later set of stimuli by Lorenceau and Alais142 provided

clues on howgeometry influencesmotion integration. By shift-

ing the edges of the diamond, the authors create an extensive

set of geometric objects to study perception (see Fig. 1.9). Res-

ults show that form has a critical role in motion integration. In

particular global motion is perceivedmore easily if the object is

a diamond than if the object is an arrow or a cross.

Fig. 1.9 Diamonds and arrows from
Lorenceau and Alais.142. All geometric
figures are derived from a diamond but
have the edges shifted differently.

1.3.3 Cross-modal influences

The hypothesis underlying the classification of t-junctions as

extrinsic comes from the statistical observation of occluded ob-

jects. It relies—at least in models—on a non-motion informa-

tion originating from the junction detectors in the form path-

way. Yet several other multi-features influences are reported in

the literature.

For instance varying the luminance at the intersection of

superposed gratings, Ramachandran and colleagues218,185 found

that luminance compatiblewith transparency elicit the percept

of two gratings, and not one single plaid (see Fig. 1.10). Thus
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perception can switch between one single plaid—pattern mo-

tion—or twogratingsmoving indifferent directions—component

motion.218,117

Fig. 1.10 Transparent motion
perception. Left: When the luminance
at the intersection of the gratings is
compatible with transparency, two
motion are perceived. Right: When
the luminance is incompatible with
transparency, a single plaid motion is
perceived.

Several other examples of influence between features exist.

Obviously, disparity information frombinocular stimuli greatly

improves motion perception. For monocular stimuli, lumin-

ance or colour information191,177 as well as auditory motion213

were shown to influence motion perception.

1.4 dynamics

1.4.1 Multi-stability

Most, if not all, the stimuli used in psychophysics are multi-

stable, as they can be perceived differently from trial to trial, or

in time within a single experiment. For most of the stimuli the

alternative perception are marginal and only the predominant

percept is studied in the literature. However some stimuli have

been designed to study those changes in percept.

Fig. 1.11 Crossed barber pole.
Observer perception shifts between
grating motion (blue) and barber poles
(red).

A crossed barber pole can be obtained by combining the

two barber poles of Fig. 1.5, i.e. by viewing a drifting grating

through a cross-shaped aperture (see Fig. 1.11). In this case, the

percept is strongly multi-stable and observers perceive either

the grating translation or two orthogonal motion.52

1.4.2 Presentation time

Perception changes over time in multi-stable stimuli, but per-

ception also changes depending on the presentation time of a

given stimulus. For instance, when a simple translating object

such as a slanted bar is presented to an observer, his visual sys-

tem is fooled by local ambiguous cues for several hundreds of

milliseconds.
Fig. 1.12 Translating bar stimulus.
A slanted bar is translating horizont-
ally (darker arrow), but its perceived
direction is initially biased towards the
direction orthogonal to its orientation
(lighter arrow).

For short durations the subject perceives a motion direc-

tion orthogonal to the bar orientation instead of the true mo-

tion direction51,144,205 (see Fig. 1.12). Such a perceptual bias is

corrected for longer durations.

Therefore the visual perception system seemed to be fooled

by the aperture problem for short durations, as if 2d features

from bar extremities are delayed in comparison with 1d fea-
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tures from the middle region. Varying the presentation time of

the stimulus, one can plot the temporal evolution of the direc-

tion error. In Fig. 1.13 we show such a time course for a translat-

ing bar stimulus as recorded by Lorenceau and colleagues.144

Fig. 1.13 Perception dynamics of
the translating bar. The angular error
of perceive direction versus true bar
direction is plotted as a function of
stimulus duration (from Lorenceau and
colleagues144).
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In the next chapter, we introduce a more natural approach

to exploremotion integration dynamics, recording smooth pur-

suit eye movements.
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Chapter 2 Tracking objects

In this chapter we introduce smooth pursuit eye movements as a

tool to understand themechanisms underlyingmotion integration.

We start in Section 2.1 by describing what is smooth pursuit and

how it is recorded. In Section 2.2 we show that pursuit is also influ-

enced by the aperture problem for short duration. In Section 2.3 we

discuss the spatial integration leading to smooth pursuit.

2.1 smooth pursuit

2.1.1 Eye movements

In the previous chapter we described 2d motion integration

from a psychophysics point of view. As suchwe considered per-

ception of the subjects at the endof an experiment and building

up a time analysis required stacking experiments of different

durations (see Section 1.4.2). In order to consider more dynam-

ical data this chapter describes an alternative view on motion

integration: the oculo-motor level.

Superior rectus

Inferior rectus

Lateral rectusMedial rectus

Superior oblique

Inferior oblique

Fig. 2.1 Eye muscles controlling the
eye.

Each of the primate eye is controlled by three pairs of ant-

agonistic muscles (see Fig. 2.1) which are able to produce sev-

eral types of movement to shift of stabilise gaze (see Krauzlis,

2008,126 for a review).

The vestibulo-ocular reflex (vor) and the optokinetic response

(okr) both stabilise gaze to compensate for head movements,

although they operate at different time scales and use differ-

ent sensors. Among the gaze shiftingmovements, saccades rap-

idly—hundreds of degrees per second—shift gaze to specific loc-

ations in the visual field, whereas smooth pursuit slowly—tens

of degrees per second—followsmoving objects tominimise the

blurring of the target. Vergence adjusts the eye to the depth of

an object. Finallymicrosaccades, intersperced among drifts, con-

tribute to fixation and high visual acuity tasks.123

In this study we only consider pursuit movements as it is

closely related to 2d motion integration. Indeed smooth pur-
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suit eye movements are used to follow moving objects and are

less consciously influenced than saccades for instance—it is really

difficult to start a smooth pursuit without a moving object. Yet

saccades and smooth pursuit appear to share a common func-

tional architecture127, and studying one can help understand-

ing the other.

2.2 following line drawings

2.2.1 Tracking bars

Smooth pursuit movements were recorded using stimuli sim-

ilars to the one described in the previous section. In the motor

experiment associated to the translating bar, subjects are asked

to follow the centre of the bar, while macaques are trained to

do so.

Thedynamics of the eyemovements arenow recordedwithin

a single experiment and they show striking similarities, both

in term of time scale and angular tracking error, with percep-

tual results.241 In Fig. 2.2 we show angular tracking error for the

translating bar in both human241 and macaques,35 and redraw

the results of Fig. 1.13 for perception.

Fig. 2.2 Tracking error and percep-
tion on a translating bar. The angular
error tracking error is plotted for hu-
man subjects (squares) and macaques
(stars). We re-plotted results for percep-
tion (disks).

100 500200 300 4000

42

32

25

17

3
8

Error [°]

Time [ms]

M
acaque

H
um

an

Percept

Again the oculo-motor system is initially biased in a direc-

tion orthogonal to the bar, and we can assume that it is subject

to the aperture problem which is solved in a few hundred mil-

liseconds.
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One can assume a commonmechanism at both perceptual

and motor level that takes local motion cues as input. Interest-

ingly this initial bias does not decrease if the subject knows the

true direction of the moving bar before the experiment. Thus

smooth pursuit eye movements provide us an easier reprodu-

cible mechanism to unravel the computations underlying mo-

tion integration.

2.2.2 Diamonds

In another line drawings experiments, Masson and Stone con-

sidereddiamonds translating154 diamond stimuli translating either

vertically or horizontally (see Fig. 2.3). Due to the local orient-

ations of the diamonds edges with respect to the translating

direction, these stimuli mimic type ii plaids. Indeed the vector

average of the edgemotions is biased 44° away from the object's

direction. The stimuli thus provide an interesting example to

study the influence of 1d and 2d cues on motion integration.

Fig. 2.3 In the translating diamonds
stimulus,154 the motion cues given by
the edges of the diamonds (blue arrows)
do not average to the real translating
direction (red arrow), as in the type ii
plaids.

Changing the configuration of the stimulus, by using clock-

wise (cw) or counter-clockwise (ccw) stimuli, or by varying the

direction of the translation, does not influence the ability to

pursuit the translating diamonds. In all the cases, the initial

pursuit direction as well as the fastest perceptual estimates are

biased towards the vector average of the edgemotions. It is only

after a few hundred milliseconds of exponential direction er-

ror decay that the eyes correctly track the object or that human

subjects report the correct direction of motion.

2.3 spatial integration

Several clues indicates that smoothpursuit involves a spatial in-

tegration ofmotion cues, as it is the case formotion perception

(see Section 1.2.2).

Barthélemy and colleagues20 used a drifting grating viewed

through circular aperturewithdifferent sizes to investigate spa-

tial integration. The orientation of the grating is constant and

orthogonal to its drifting direction, but the diameter of the cir-

cular aperture varies among the stimuli (see Fig. 2.4).

Fig. 2.4 Drifting grating viewed
through different aperture sizes.

The authors quantify the change in eye direction during
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several time windows with respect to the diameter of the aper-

ture. Their goal is to provide a quantitative measure of the spa-

tial summation area, i.e. the smallest diameter leading to the

strongest change in eye position. Such spatial summation func-

tions can be seen as a global readout of the motion integration

performed in cortical area mt.

It is however also possible to look at the perceptual effects

of such stimuli: varying sizes of grating patches affect motion

detection as well as motion after effect. Many psychophysical

studies have been conducted on the perceptual consequences

of the centre-surround interactions in early visual areas.202 and

it becomes possible to compare these results for the properties

of neuronal receptive fields in various cortical areas.

In the following chapter we will study the biological sub-

strate for the various phenomena reported in the literature.
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Chapter 3 Neural architecture

In this chapter we discuss the anatomical and physiogical substrate

of motion integration. Section 3.1 briefly review the neural architec-

ture of the visual system, in particular its organisation in areas. Sec-

tion 3.2 describe the functional properties of neurons in the visual

cortex. Section 3.3 provides some hints on howmotion is processed.

3.1 brain anatomy

3.1.1 Retinal input

At the entrance of the visual system is the retina which trans-

duces the received light into electrical impulses. The retina it-

self ismade up several layers of neurons, from the photorecept-

ors catching the photons to the ganglion cells sending the sig-

nal to the rest of the visual system. Measuring and interpreting

both retinal responses and the retinal computations are cur-

rently very active fields of research.91,256,81

LGN

Retina

V1
Fig. 3.1 Pathway to the visual
cortex. Light received by the retina is
transformed into an electrical impulse
passed through the lgn and forwarded
to v1.

The visual signals can take various paths starting from the

retina. In this study we consider the retino-geniculo-cortical

pathway, sincewe are interested in the cortical interactions and

their relation to perception and dynamics. In this pathway, the

signal emitted by the retinal ganglion cells is passed through

the lateral geniculate nucleus (lgn), a thalamic region of the

brain, and forwarded to theprimary visual cortex (v1) (see Fig. 3.1).

v1 is the cortical area at the entrance of the visual cortex.

Despite not being the focus of this study, other visual path-

ways can also provide useful information leading to changes

in perception or oculo-motor dynamics. For instance inform-

ation from the retina also flows into the superior colliculus, a re-

gion of themidbrain closely involvedwith eyemovements (also

called tectum in other species). Connections between the su-

perior colliculus and other regions of the brain which are sup-

posed to be beyond the primary visual cortex explain why some

those other regions can still be activated even if the primary
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visual cortex is disabled.195,90

3.1.2 Cortical areas

The cerebral cortex of primates can be divided in anatomically

and functionally distinct areas called the cortical areas. Focus-

ing on the visual cortex, one can find cortical areas dedicated

to colour, motion perception, object recognition, or eye move-

ments.

Although the separation is not so strict, a classical view is

to consider Cortical areas in the visual system to be grouped

in two main pathways. Areas in the form pathway mostly pro-

cess static information such as colour or shape, and included

areas dedicated to shape recognition. Areas in themotion path-

way analyse changes in the image, integrate motion, and initi-

ate eye movements. Both pathways have anatomically distinct

cells, called parvocellular in the form pathway, andmagnocellu-

lar in the motion pathway. The neurons not classified in one of

those groups are known as koniocellular.

3.1.3 Connections

Long range connections such as the one coming from the lgn

to the v1 help us understand the visual information pathways.

Inside a single cortical area, short range connections exists, the

lateral connections (or horizontal connections) used by neurons

in a single area to process information. Despite their shorter

travelling distance, lateral connections are slower than connec-

tions between areas since they are not myelinated (0.1–0.2 m/s

versus 2–6 m/s in the macaque93).

Form Motion

V1

V2
V3

MT

MST

V4

LGN

Retina

SC

PI

Fig. 3.2 Major areas involved with
motion in the primate visual system
(adapted from Felleman and van Essen,
199177). Dotted region denotes the
cortical areas.

The information emitted by the retina is not directly trans-

mitted to all the cortical areas in the visual cortex, and a hier-

archical structure is constructed,where higher areas are less dir-

ectly connected to the retina since information passes through

a lot of lower areas. For instance, most of the visual input con-

cerning motion will go from the retina to the lgn from where

its projected to v1, then passed through mt, and later to mst

and other higher cortical areas (see Fig. 3.2).

In addition to the forward streamcarrying information from

the retina to thehigher level areas, a backward stream transmits
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back information to areas closer to the retina. Those feedbacks

transmit information across large regions of the visual field8

and are proposed to play a major role in contextual informa-

tion processing.

3.2 properties of neurons

3.2.1 Retinotopy

Thefirst areas of the visual cortex preserveneighbourhoodprop-

erties: twoneighbouring neurons in the retina are connected to

two neighbouring neurons in the cortical area v1. This preser-

vation of topology is called retinotopy and is partially guided by

chemical markers during the development phase, as first hy-

pothesised by Sperry.215,214,110 Those chemical markers are as-

sumed to encode the position of neurons in the receptive field.

Yet such a chemicalmechanism, also called chemospecificity,

is likely to be complemented by other processes, in particular

due to the numerous cells in the visual systemareas. Among the

various principles proposed to guide retinotopy, Hebbian ap-

proaches are themost popular andbiologically plausible. Among

them, the lissom model by Miikkulainen, Bednar, Choe and

Sirosh156 provides the most extensive implementation and ex-

plains the emergence of receptive fields.

3.2.2 Receptive fields

Because the connections from the retina to the visual cortex

tend to maintain a neighbourhood, neurons in v1 receive in-

put from a small region of the retina, corresponding to a small

portion of the visual field. The region in the visual field that a

neuron sees is called its receptive field and is assumed to be at

the origin of the aperture problem described in Section 1.1. In-

deed only a few neurons in v1 see the 2d cues such as the one

at the extremities of a translating bar, andmuchmore neurons

are activated by the 1d cues.

The higher areas of the visual cortex, the larger the recept-

ive fields are. Indeed each neuron in a cortical area receives in-

put from multiple neurons of a lower cortical area, and its re-

ceptive field is thus a combination of the lower ones. Typical
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values for the receptive fields are 1° for v1 cells or 6–10° for mt

cells. Those values are however variable inside a single cortical

area as they depend on the position of the receptive field of the

cell. The distance of the receptive field of a cell from the centre

of the visual field is called the eccentricity. The further the ec-

centricity, the larger the receptive field is, following a log-polar

scheme.

3.2.3 Motion tuning

In each cortical area, neurons are tuned for specific features.

Yet not all the neurons in an area are tuned for the same feature.

For instance only 30% of the neurons in area v1 are selective

to the direction of motion, but this percentage raises to 92%

in area mt.212 Indeed area v1 is not specific not motion, since

it is the entry point of the visual cortex (see Section 3.1.1) and

includes all kind of visual information.

Neurons in v1 and mt are also selective to speed, but with

different tuning. v1 cells prefers small speeds (around 2°/s) but

mt cells are tuned to higher speeds (10-20°/s) despite taking

their input from v1.150

Fig. 3.3 Disparity columns in mt.
From DeAngelis and Newsome.65

Several cells in the visual system are tuned for multiple fea-

tures andmay thus provide the substrate for cross-modality in-

teractions. In mt, DeAngelis and Newsome65 found patches of

direction selective cells which are also part of binocular dis-

parity columns (see Fig. 3.3). Based on recordings from Basole

and colleagues21 in the ferret, Mante and Carandini148 postu-

late that the tuning of v1 cells for motion direction is multi-

plexedwith orientation preference, viewed a blob in the spatio-

temporal frequency domain.

3.2.4 Receptive field structure

The receptive field is often structured, in that different regions

have different contributions to the neuron response. Moreover

some regions of the receptive field can be inhibitory, meaning

that neuron response will be lower if this part of the recept-

ive field is also stimulated, rather than the excitatory part only.

Furthermore receptive fields can be divided into two parts: its

centre, also called classical receptive field (crf), and the surround.
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An activation of the centre is required to elicit a response of the

neuron, but action in the surround canmodulate this response.

Activation in the surround alone, even if it is excitatory, cannot

elicit a response. In Fig. 3.4we show the three types of inhibitive

surround found by Xiao and colleagues in mt.258
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Fig. 3.4 Three main types
of surrounds found by Xiao and
colleagues258 in the cortical area
mt.

In addition to spatial receptive fields, neurons in the visual

cortex are tuned for certain properties, like orientationor spatio-

temporal frequencies. Those properties are sometimes combined

together in the more general concept of spatio-temporal re-

ceptive fields often defined in the frequency domain. Indeed

it is not sufficient to consider the tuning of neurons separately

of its other spatial properties. For instance the preferred ori-

entation tuning of v1 cells changes with direction or speed,21 a

change easily understandable ifwe consider the spatio-temporal

tuning of the neurons.148

3.2.5 Receptive field dynamics

Most models explaining the visual processing at work during

the early stages of the brain assume that the tuning of the neur-

ons, i.e. their receptive fields, does not change during the ex-

periments.However various experiments in the literature show

that the receptive fields are reshaped according to various factors:

the time of the experiment, the contrast in the stimulus, the

locus of attentions, etc. Receptivefields reshaping is also amech-

anism found at all the levels of the visual cortex, e.g. in the

retina,112 in the lgn,155 in v1,141 in v4,159 in mt,128 or in lip.28

In this section we focus on motion processing cortical areas,

namely v1 and mt.

Spatial changes

Pack and colleagues174 recorded changes in the receptive field

size varying the contrast. For high contrast data, the recorded

cells show a suppression of their activity as the stimuli size in-

crease.On the contrary lowcontrast data, the recorded cell show

only an increased activity while the stimuli size increase. These

results are consistent with segmentation at high contrast, and

diffusion at low contrast, as observed in the literature.

Experimentalists proved that the classical centre-surround
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receptive fields of mt neurons is not fixed spatially but can be

modified by attention.257,10 Having the attention fixed at a cer-

tain point moves the spatial receptive field structure towards

the attended point. Moreover the spatial structure is changed

depending on whether the fixated point is inside or outside the

classical receptive field. If the attended point is inside, the re-

ceptive field is shrunk, while it is expanded if the point is out-

side.

Tuning changes

Probing the response of mt monkeys cells with plaids, Pack,

Berezovskii and Born169 shown that their preferred direction

changes over time. As shown in Fig. 3.5 the direction tuning

of an mt neuron evolves over time. Initially neurons respond

to the two 1d gratings motion, and later converge towards the

average 2d plaid motion. The convergence does not appear in

anaesthetised monkeys.

Fig. 3.5 Mt neuron response to a
plaid stimulus (from Pack, Berezovskii
and Born169). Left: Direction tuning for
the first 20 ms. Right: Direction tuning
averaged over the last 1500 ms. Outer
circle correspond to 90 spikes/s.

90
60

30

0

330

300
270

240

210

180

150

120
90

60

30

0

330

300
270

240

210

180

150

120

Early Late

Similar dynamics can be found by probing the firing-rate

of mt neurons with barber pole stimuli:172 Although during the

early stage, mt neurons have their preferred direction similar

to when gratings are used, after a time the preferred direction

moves towards the orientation of the barber pole.

As in the aperture problem, the shift of the preferred direc-

tion can be explained thanks to delayed inhibitivemechanisms,

as shown by Escobar and colleagues in v1.74

Attention can also modulate the gain in neuron responses,
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in particular it can increase or decrease the responses in mt

neurons for a specific direction.179

Pattern versus component cells

Pack and colleagues shown that the response of an mt cells to

plaids can vary over time to shift from the two componentmo-

tions, to the patternmotion.Movshon and colleagues qualified

neurons having this property pattern direction selective (pds).161

But other mt neurons, the component direction selective (cds),

are shown to enhance their component motion preference.
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Fig. 3.6 Evolution of cell classific-
ation as pattern or component in mt
(from Smith, Majaj and Movshon211).

Using pattern and component correlations, Smith, Majaj

and Movshon shown that the pattern versus component cell

classification evolves over time.211During the firstmilliseconds,

all neurons are unclassified, and their correlations changes dur-

ing the first 300ms (see Fig. 3.6). Note that component cells are

classified sooner than pattern cells.

3.3 neural computation

3.3.1 Pooling of v1 responses

While the computational rules actually used by the brain are

still highly disputed, there arenumerous physiological evidences

that cortical area v1 implements local motion computation and

feeds an integrative stage such as area mt.34 In macaque area

mt, neurons solving the aperture problem have been found by

various studies, using different 2d motion stimuli.162,171,172,211
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This property contrasts with the findings that v1 neurons

mostly respond to the direction orthogonal to the orientation

of the edge drifting across their receptive field,162 albeit some

neurons seems to act as local features detectors such as end-

stopped cells.116,176 Thus, there seems to be a good intuition

that 2d motion computation is a two-stage mechanism with

local extraction feeding global integration.

3.3.2 Aperture problem

Interestingly, when presented with a set of small oriented bars,

direction selectivity of mt neurons exhibit dynamics similar to

the one observed at the tracking (see Section 2.2) and percep-

tion (see Section 1.1) levels: their optimal direction slowly rotat-

ing from the component orthogonal to the bars orientation to

the 2d motion direction over a 150 ms response period.171

34 neural architecture



Chapter 4 Existing motion models

This chapter reviews threemodels of motion integration among the

numerous propositions in the literature. The selected models share

common mechanisms that we believe to be fundamental to under-

stand the links between cortical activity and the dynamics of mo-

tion perception and smooth pursuit. The model of Simoncelli and

Heeger presented in Section 4.1 combines half-squared divisive in-

hibition and the doughnut mechanism to account for responses in

individual mt cells. The detailedmodels of Grossberg,Mingolla and

colleagues, presented in Section 4.2, explain a wide range of percep-

tual results based on neurons interactions. Themodel of Bayerl and

Neumann presented in Section 4.3 investigates the role of simple

biological mechanisms and apply them to computer vision prob-

lems.

4.1 simoncelli and heeger (1998)

Heeger and Simoncelli proposed a linear/non-linear model of

motion integration mapping the cortical areas v1 and mt.208

Their model successfully reproduces responses of v1 and mt

neurons for several experiments with gratings, plaids and ran-

dom dots.

4.1.1 Model description

Computations in the model are mapped to three populations

of the visual cortex.

The model considers a greyscale video I(t, x) : R+ ×Ω ∈
R+ as input, where t denotes time, and Ω ∈ R2 is the con-

sidered spatial domain. Response of v1 simple cells is denoted by

L(t,n) : R+×O, whereO is the set of orientations alongwhich

the input image is filtered. 28 different orientations are sampled

to filter the input with third-derivative Gaussian filters. Then,

the v1 complex cells response is computed by averaging simple

cells responses having similar orientation and phase. Finally,
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the computation of mt cells responses combines the complex

cells output using a divisive inhibition.

The divisive inhibition is applied at two stage in themodel:

at the output of the filters, and at the output ofmt. Itmodulates

a single cell activity p(t, i) tuned for any given feature i by the

population average (see Fig. 4.1):

q(t, i) = λ1
|p(t, i)|2+∑

j |p(t, j)|
2
+ + λ2

, (4.1)+

/ /

Fig. 4.1 Inhibition in the model
of Simoncelli and Heeger.208 First
the input signal is half-squared, then
divided by the sum of the half-rectified
signals, thus implementing a selection
mechanism.

where |x|+ = max(0, x) denotes a positive rectification to ac-

count for the firing rate activity, and λ1,2 are constants.

4.1.2 Discussion

The authors propose a doughnut mechanism to combine the re-

sponses of the cortical area v1 which act more like filters, into

direction selective cells in mt. Indeed, the receptive field of v1

cells can be characterised by blobs in the spatio-temporal fre-

quencydomain.124Moreover, the frequency response of various

stimuli, moving with the same velocity but with different fre-

quencies, all lies on a plane. Hence, Simoncelli andHeeger pro-

pose that mt cells tuned for a given velocity pool the responses

of v1 cells lying on the plane corresponding to their tuning.

One should note that the filters used in this model are not

causal.

4.2 grossberg and mingolla (1997, 2001, 2007)

Grossberg, Mingolla and colleagues proposed several incarna-

tions of theirmodel incorporating form andmotion processing

to reproduce perception on a wide range of stimuli. The au-

thors map their model to various cell populations in cortical

areas v1, mt and mst.

4.2.1 Model description

Chey, Grossberg and Mingolla model the initial stages of mo-

tion detection in details using transient and directional cells to

compute motion direction.56 The three other cell populations
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model lateral interactions (spatial integration and centre/sur-

round mechanisms).

Each population of the various incarnations of the models

defines the activity p of its cells as a membrane equation :

Cm
∂p

∂t
= −(p− Ee)ge − (p− Ei)gi − (p− El)gl (4.2)

where ge and gi represent the total inputs from excitatory and

inhibitoryneurons synapsingon the cell, i.e. their receptive fields,

gl is a leak conductance, and the E· are reversal potentials.

Oneof the interesting features of themodel is the detection

of motion. Whereas other approaches take spatio-temporal fil-

ters or correlationdetectors responses as input, the authormodel

the mechanisms leading for detecting motion in their first cell

populations. Moreover they investigate the role of on and off

streams as found in the lgn and v1.

Motion detection is handled by the following populations:

• Transient cells detect changes in the input and are di-

vided into on and off channels.

• Directional interneurons integrate transient cells response

by receiving excitatory input from activity at the same

position and inhibitory input fromdirectional interneur-

ons sensitive to opposite direction.

• Directional transient cells received their input from tran-

sient cells and directional interneurons.

• Short-rangemotionfilters accumulatemotion in eachdir-

ection at two different spatial scales.

Cells are classified as either belonging to the on or the off

channels (for the first populations), or one of the two spatial

scales (for highest populations). Height possible motion direc-

tions are considered in themodel and speed (motionmagnitude)

is not handled.

+ +-
-

Fig. 4.2 Bipole cells of Grossberg
and Mingolla. Due to their peculiar
centre/surround, the inhibits informa-
tion from t-junctions.

In a subsequent versionof themodel,96 the authors included

recurrent connectivity between higher and lower cortical areas,

as well as formmodulation using their formotionmodel.94 In
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particular the peculiar centre-surround organisation of bipole

cells (see Fig. 4.2) allows the detection of some extrinsic junc-

tions, in particular in the chopstick illusion.

4.2.2 Discussion

In comparison to the model of Heeger and Simoncelli, the au-

thors proposed recurrent model incorporating spatial interac-

tions. They extensively studied the stimuli proposed by the psy-

chophysics literature and successfully reproduced the percep-

tual results. In addition, Grossberg and Mingolla implement a

dynamical model in which the output of a cell is not fixed but

varies in time. This dynamics allows to see the resolution of the

aperture problem in time and can also serve as input to other

mechanism such as smooth pursuit.173

4.3 bayerl and neumann (2004)

Themodel of Bayerl andNeumannprovides an interesting small

framework to study motion perception. They propose a recur-

rently connected system mapping v1 and mt, and apply it to a

several simple synthetic stimuli to understand resolution of the

aperture problem. An important contribution of their model is

that it is also able to process large video sequences such as the

one used in computer vision and provide good results. The au-

thors also investigated several extensions of this model.

4.3.1 Local motion estimation

Starting from the input image sequence I : (t, x) ∈ R+ ×Ω →
I(t, x), Bayerl and Neumann estimate the local motion k1 us-

ing modified Reichardt detectors. Two filtered images are cor-

related to estimate population activity: Directional derivatives

are used to filter the input:

c1(t, x,α) =
I(t, x)

x∗ ∂2αGσ

ε+
∑

β∈O

∣∣∣I(t, x) x∗ ∂2βGσ

∣∣∣ x∗Gσ

,

where ε avoids division by zero,Gσ denotes a Gaussian kernel,
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σ's are scaling constants,
x∗ denotes the convolution operator in

space and ∂2α denotes the second order directional derivative in

the direction α ∈ O.

From thesefilteredoutputs, theBayerl andNeumanndefined

the half detectors by correlation with another frame:

c+2 (t, x, v) =

(∑
α∈O

c1(t, x,α) c1(t+ 1, x+ v,α)

)
x∗Gσ,

c−2 (t, x, v) =

(∑
α∈O

c1(t+ 1, x,α) c1(t, x+ v,α)

)
x∗Gσ,

whereσ's are scaling constants. Thehalf detectors are then com-

bined by:

k1(t, x, v) =
|c+2 (t, x, v)|+ − 1

2 |c
−
2 (t, x, v)|+

1+ |c−2 (t, x, v)|+
,

where |x|+ = max(0, x) is a positive rectification, for the activ-

ity of neurons is always positive.

Due to its simple two-frame correlation, this local motion

estimation is limited in its frequency support, and is not equi-

valent to the elaborated Reichardt detectors236 and thus not to

the energy models.

4.3.2 Model description

The two cortical areas implemented by Bayerl and Neumann

can be described by their activity:

pi : (t, x, v) ∈ R+×Ω× V → pi(t, x, v) ∈ [0, 1], i ∈ {1, 2},

(4.3)

where V represents the space of possible velocities. Each func-

tion pi can be interpreted as the state of a cortical area retino-

topically organised which describes at each position x the in-

stantaneous activity of a neuron tuned for the velocity v.

Processing in each cortical areas follows the following stages:
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m1(t, x, v) = k1(t, x, v) (1+ 100p2(t, x, v)),

n1(t, x, v) = m2
i(t, x, v)

v∗Gσ,

p1(t, x, v) =
n1(t, x, v) − (1/2|V|)

∑
w∈V n1(t, x,w)

0.01+
∑

w∈V n1(t, x,w)
,

n2(t, x, v) = p2
1(t, x, v)

x,v
∗ Gσ,

p2(t, x, v) =
n2(t, x, v) − (1/2|V|)

∑
w∈V n2(t, x,w)

0.01+
∑

w∈V n2(t, x,w)
,

wheremi and ni are intermediate stages to compute pi, k1 is

the localmotion input described in Section 4.3.1,
v∗ denotes con-

volution with respect to the spatial domain with a Gaussian

whose standard deviation is 0.75 and
x,v
∗ denotes convolution

with respect to the spatial and velocity domains with a Gaus-

sian whose standard deviations are 0.75 (velocity) and 7 (spa-

tial).

4.3.3 Discussion

The model of Bayerl and Neumann24 was successfully applied

to moving squares with fixed velocities. In addition it proves

that a simple model can achieve good performances with com-

puter vision videos. In this respect it can be linked to themodel

of Castellanos Sánchez, Giraud and Alexandre49 in which com-

puter vision sequences are used as input, and later implemen-

ted on fpga.233 Bayerl andNeumann also extended it to support

transparent motion and incorporate form cues. Those exten-

sions allow the model to report correct results on random dots

stimuli and overlapping squares.

Themodel uses a divisive inhibition similar to the one pro-

posed by Simoncelli and Heeger208 (see Section 4.1) but extend

it with spatial interactions.

Compared to Grossberg andMingolla, there are no dynam-

ics and themodelling is less detailled, allowing comparisonwith

perceptual recordings to a lesser extent. As with the models of

Grossberg and Mingolla, the model incorporates spatial inter-

actions and recurrent connectivity. The main difference is the
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small set of equations linking in a fashion similar toHeeger and

Simoncelli, and the focus on computer vision stimuli, at the ex-

pense of more perceptual experiments.
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In Chapter 5 we describe the common architecture of ourmod-

els and discuss its biological plausibility. Our models consider

the dynamical activity in two cortical areas involved with mo-

tion integration, v1 and mt. We also describe the input of the

models and give a readout to compare the results tomotion dy-

namics such as smooth pursuit.

The first incarnation of ourmodel is given inChapter 6.We

show that a small set of key characteristics is sufficient to ex-

plain a wide variety of motion percepts. Moreover the dynam-

ics of our model allow us to compare its output to perceptual

and behavioural recordings and link them to the computation

of motion in the visual cortex.

Yet some stimuli requiremore complexmechanism to solve

motion ambiguities. In Chapter 7 we propose an extension of

our initial model in which motion cues are gated by luminance

information from a cortical area in processing form. Such a lu-

minance modulated diffusion is an alternative to more com-

plex models relying on features detectors and proposes biolo-

gical foundations to the motion segmentation problem.

Finally, we transpose our initial model into the neural field

formalism in Chapter 8. We show that this change of frame-

workdoesnot impact the results obtainedusingour initialmodel,

and allowsus toprove several properties of ourmodel.Weprove

the existence and uniqueness of the solution and experiment

properties of the selection mechanism.
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Chapter 5 Models architecture

In this chapter we describe the common architecture of our mod-

els and briefly discuss its plausibility. In Section 5.1 we introduce

the rationale of our models focusing on its spatial and dynamical

properties. The general description of our models is given in Sec-

tion 5.2. We define an input to our models and a readout to com-

pare to smooth pursuit dynamics in Section 5.3. Section 5.4 gives

some implementation details.

main contributions

� A dynamical cortical architecture to study motion integra-

tion.

� A model of readout to compare output to smooth pursuit.

5.1 introduction

Our goal is to demonstrate how a minimal model can qualitat-

ively reproduce a wide set of motion integration and segment-

ation phenomena as observed at different levels: neuronal, psy-

chophysical and oculomotor behaviour. Thismulti-level extent

is important because the different dynamics are inter-related

and give complementary insights about the neuronal solution

of the aperture problemand the selective integrationprocess.152

There are two aspects that have been largely ignored by

most of the two-stage feedforward models.162,255,208,199

First, motion integration is intrinsically a spatial process.

Since most of the natural objects are rigid, propagating non-

ambiguous motion information is an essential aspect of mo-

tion integration.106,164,98,248 The role of such diffusion process

has only been investigated in a small number of biologically in-

spired models. Grossberg and colleagues94,32 investigated how

local form and motion cues can be integrated through recur-

rent diffusion (see Section 4.2). A similar solution was also de-
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veloped by Bayerl and Neumann,22,23 albeit with a more simple

and realistic motion computation algorithm (see Section 4.3).

Second, biological computation of global motion is highly

dynamical. When presented with simple lines, plaids or barber

poles, the perceived direction reported by humanobserverswill

shift over time (see Section 1.1). And similar dynamics have been

found with smooth pursuit eye movements (see Section 2.2).

Such temporal courses can reflect the dynamical neural solu-

tion to the aperture problem. Indeed, over a time course of sev-

eral tens ofmilliseconds, neurons in the area mt solve the aper-

ture problem, so that late but not early preferred direction cor-

responds to pattern motion direction.171,172,211

Here, we propose a dynamical model providing a simple

solution for 2d motion integration by using a minimalist set

of biological properties such as recurrent connectivity between

layers working at different scales. Moreover, our models sug-

gests that thedynamics of spatial integration and the time course

of motion perception can be intrinsically linked.

5.2 description of the models

5.2.1 Global structure

Our goal was to test how several basic mechanisms of cortical

processing can be implemented in a dynamical model to solve

several aspects of 2d motion integration. Motion information

is extracted and processed at different spatial scales within lay-

ers that are recurrently interconnected. As illustrated in Fig. 5.1,

the common basis of our models is described by three layers of

motion processing.

The first layer extracts local motion energy through spatio-

temporal filtering, corresponding to simple and complex cells

of the primary visual cortex.208

Motion integration

MT

V1

Local motion

Fig. 5.1 Schematic view of the
model. Recurrently connected areas p1

and p2 implement motion integration
and take local motion cues k1 as input.

They form the input to a second layerwhich computes local

direction and speed of motion. Some complex cells in primary

visual cortex have been shown to perform such local velocity

computation.190

The third layer implements mt neurons, which integrate

motion over larger portions of the image through the conver-
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gence of cortical layer 2 cells. Our mt-like layer 3neurons have

larger receptive fields and are tuned for lower spatial frequen-

cies and higher speed than striate-like layer 2 cells. This fact

is consistent with the view that v1 and mt operate at different

scales.34 Feed-forward models of motion integration are heav-

ily rooted on such evidence208,199,255,147 and we will compare

our results to one of them. However, v1 and mt areas are re-

currently interconnected.207 Existing models have shown that

such recurrent connectivity can play a role in solving the aper-

ture problem in synthetic and natural sequences56,24,22 as well

as implementing contextual effects observed in v1 andmtneurons.8

Dynamics are the major innovation of our model. Indeed,

we do not consider

5.2.2 Models overview

Ourmodel implements interactions between several layers pro-

cessing motion information. The model estimates dynamically

the velocity information given an input grey level image sequence

denoted by:

I : (t, x) ∈ R+ ×Ω → I(t, x) ∈ [0, 1],

where t is the time, and x = (x1, x2) denotes the spatial posi-

tion within the 2d spatial domainΩ ∈ R2.

The state of each layer is described by a scalar-valued func-

tion corresponding to a level of activity at each spatial position

and for each velocity.

pi : (t, x, v) ∈ R+×Ω× V → pi(t, x, v) ∈ [0, 1], i ∈ {1, 2},

(5.1)

where V represents the space of possible velocities. Each func-

tion pi can be interpreted as the state of a cortical area ret-

inotopically organised which describes at each position x the

instantaneous activity of a neuron tuned for the velocity v. In

brief, layer k1 implements a local motion estimation through

spatio-temporal filtering. These local measurements are integ-

rated to compute local velocity at two different spatial scales

in layers p1 and p2. The two layers can be seen as an imple-
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mentation of detection and integration stages that correspond

to cortical areas v1 and mt.

The coupling between layers defines the connectivity rules

using a set of coupled differential equations. With that respect,

our model follows some previous contributions.56,24,32 Forward

connections transmit information from layers closer to the eye

to layers deeper in the systemwhile backward connections pro-

ject back to the areas closer to the eye as discussed in Section 3.1.3.

Lateral connections are inhibitory andprovide eachneuronwith

an input from its neighbourhood.The followingparagraphs give

more details on the different layers and their connections.

5.3 input and output

5.3.1 Local motion estimation

The initial stage of every motion processing system is to com-

pute local motions cues as input to the system. Various models

of motion detection have been proposed in the literature, with

different degrees of biological plausibility.193,236,245,1 Here, we

define the input motion detectors, p0, using a motion energy

model which is an efficient way to extract local motion with

spatio-temporal filtering kernels corresponding to neuronal re-

ceptive fields.102,208,199 The choice of filtering has two main ad-

vantages over simpler correlations techniques*: First, spatio-* See for example Section 4.3.1 where
we describe an alternative local motion
detection based on correlation of two
frames.

temporal filters can handle a larger class of input stimuli due

to their wider frequency tuning. Second, fast techniques can be

used to estimate local motion due to the properties of steerab-

ility and separability properties of certain energy filters.85,208,68

In addition, mechanisms to combine the output of such filters

have been largely studied. For instance, the doughnut mechan-

ism is described and studied by Simoncelli and Heeger.208

Our local motion input is based on an energy model com-

puted fromthefilters ofDerparnis andGryn,68 namely the second

derivative of a Gaussian and its quadrature pair—its Hilbert

transform. Thanks to the property of those filters it is easy to

steer themto anyother orientationusing an interpolationmech-

anism. We combined the output of those filters using the ap-

proach proposed byAlexiadis and Sergiadis.4 This choice ismo-
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tivated by the well-defined theoretical framework that the au-

thors developed for basis filter combination, as well as the eas-

iness to apply these filters. Briefly, the expression of the filter

response is given by:

fr(t, x, v) =

N∑
n=0

(
M∑

m=1

trm(srn(v))(y
r
m

x∗ I)(t, x, v)

)2

, (5.2)

where r∈{o,e}, fo and fe are the odd and even responses of the
filters, N is the order of the chosen filters,M = (N + 1)(N +

2)/2, yr
m are a set of pre-calculated filters, independent of the

chosen velocity, and srn are vectors on frequency plane corres-

ponding to the velocity v combined with the weights given by

the function trm, and
x∗ denotes convolution with respect to the

spatial domain.

Then, based on the expression (5.2), we defined the activity

(energy) of our first layer k1 by:

k1(t, x, v) = fo(t, x, v) + fe(t, x, v). (5.3)

5.3.2 Defining readouts

Ourmodel estimates a distributed activity response: each func-

tion pi can be interpreted as the state of a cortical area that

is retinotopically organised to provide at each position x the

instantaneous activity of a neuron tuned for the velocity v, as

shown in Fig. 5.2.

Fig. 5.2 Distributed activity re-
sponse for a translating bar.

Since such a distributed representation is hard to interpret

and analyse, we first define an optical flow like representation.

To do so, we average at each position the population response

across all velocities, thus obtaining a single vector. Thus, a ve-

locity fieldmi can be extracted from any layer pi by:

mi(t, x) =

∑
v∈V pi(t, x, v) v∑
v∈V pi(t, x, v)

, i ∈ {1, 2}. (5.4)

Fig. 5.3 Optical flow representation
by sampled velocities or colour code.

This velocity field can be represented either by arrows or by a

colour coded image indicating speed and direction (see Fig. 5.3).

Here,weuse theMiddlebury colour code15 as illustrated inFig. 5.4.

This colour code emerged as the de facto standard in the optical

flow computer vision community and it is motivated by colour
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perception experiments. It associates a single colour to each ve-

locity. The direction of the velocity corresponds to the hue of

the velocity, for instance yellow for downward velocities, while

the speed of the velocity is encoded in the saturation of the col-

our, whiter for slower speeds.

vy
vx

Fig. 5.4 Middlebury colour code.
For each velocity, direction is repres-
ented by the hue, and speed by the
saturation.

Based on this velocity field, another way of interpreting the

model output and its dynamic is to define a readout such as

the eye movement direction w(t) ∈ R2. Given w(t), one can

compare the model performances with the dynamics of biolo-

gical motion processing gathered at different levels: physiolo-

gical, psychophysical and behavioural. To do so, we defined a

simple readout from the activity in layer p2, by averaging the

velocity field over space and at a given time, with a temporal

smoothing defined by the following dynamical equation:

dw
dt

(t) = λ

(∑
x∈Ω

m2(t, x) −w(t)

)
, (5.5)

where m2 is defined by (5.4). Thanks to the definition of this

readout, we will define in Section 6.2.1 an estimated direction

errors, so that direct comparisons with biological data will be

possible.

5.4 implementation details

In this thesis we document the performance of ourmodels for a

wide range of synthetic motion stimuli already used for invest-

igating brain dynamics of 2dmotion integration and segmenta-

tion.We qualitatively reproduced the neural dynamics of these

phenomena, in particular their time courses. Results were ob-

tained for full-contrastmotion stimuli but several simple changes

in image geometry were tested, based on previous psychophys-

ical work.

As far as implementation is concerned, time is discrete so

that the input grey level sequence is given by a set of images at

different times. Here we assume that the images are sampled

every 100 ms. The set of possible velocities V also needs to be

sampled. We chose V = [−3, 3]2 ∈ Z2 so that the velocities are

sampled in a 7× 7 pixels grid.
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Simulations were written in the Python programming lan-

guage and used the SciPy scientific library.120 Integration was

performedusing a fourth-orderRunge-Kutta (rk4)methodwith

atmost 10 iterations between two successive input frames. Luminance-

gating described in Chapter 7 was implemented on gpu using

the cuda library.

A notable exception is the work for the searise European

project which mostly uses c++ source code, gpgpu technolo-

gies, and relies on frame-by-frame approaches (see Chapter a).
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Chapter 6 Dynamics of motion

integration

In this chapter we propose a dynamical model of motion integra-

tion accounting for perception and smooth pursuit eye movements

and based on our common architecture. The model is described in

Section 6.1 by the activity in two cortical areas, v1 and mt. In Sec-

tion 6.2 we show that a variety of motion percept and dynamics are

taken into account. Results are given for line drawings and grat-

ings stimuli. We conclude in Section 6.3 by discussing the dynamics

of the model, its relation with existing approaches, and its limita-

tions.

main contributions

� A model explaining a wide range of motion percept

� And accounting for smooth pursuit dynamics

6.1 model

6.1.1 General connectivity

Given the activity k1, the core of our model is defined by the

interactions between the two layers p1 and p2, which are mod-

elled by two coupled differential equations:

∂p1

∂t
= −λ1p1 + (1− p1)

∣∣∣∣λf1k1 + λbk1p2 − λl1Gσl
1

x∗
∫
V

p1(t, x,w) dw
∣∣∣∣
+

,

(6.1)

∂p2

∂t
= −λ2p2 + (1− p2)

∣∣∣∣λf2Gσf
2

x∗ p1 − λl2Gσl
2

x∗
∫
V

p2(t, x,w) dw
∣∣∣∣
+

,

(6.2)

where Gσ is a Gaussian function of variance σ, λ's and σ's are

constants, and |x|+ = max(0, x) denotes a positive rectifica-
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tion.

The two main characteristics of our model (6.1)–(6.2) are

summarised as follows:

� feedback, from p2 to p1, which is modulated by λbk1 in a mul-

tiplicative way.24 Therefore we used a modulating rather than

driving feedback, similar to that found in studies of themotion

processing system in primates.207

� lateral inhibition,modelled by the terms−λGσ∗
∫
p(t, x,w)

for both layers p1 and p2. All neurons at a given local neigh-

bourhood and for all possible velocities inhibit each other. Such

short-range lateral inhibition, usually called recurrent inhib-

ition, leads to a selection or winner-take-all mechanism.64,262

Instead of the divisive inhibition as found in somemodels,167,24

we implemented a subtractive inhibition.

6.1.2 Parametrisation

The model is fully specified by a set of 12 parameters. These

parameters, whose values are given in Table 6.1, were found

by matching the time scale dynamics of psychophysical exper-

iments. The simple line drawing stimulus was used to fit the

parameters that were then kept constant for all other motion

stimuli.

In addition to the time scale matching procedure, we also

investigated the role of the parameters. For instance, the λl1 and

λl2 parameters representing the weight of the inhibition are ne-

cessary to achieve a selection like mechanism.262,64 We evalu-

ated the acceptable range for those inhibition parameters to be

between 1.8 and 8.0.

Table 6.1 Chosen parameters
setting for our dynamical system.

(6.1) λ1 = 2.0 λf1 = 1.0 λb1 = 24.0 λl1 = 4.0 σ1 = 2.0
(6.2) λ2 = 2.0 λf2 = 16.0 σf

2 = 8.0 λl2 = 4.0 σ2 = 2.0

6.2 experimental results

The results are organised as follows. First we present results

on the dynamics of motion integration obtained with classical
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simple stimuli made of line drawings. Second we continue our

explorationbyusingdifferent plaid patterns. Finallywedescribe

the effect of the aperture shape on 2d information and its con-

sequence for motion perception.

6.2.1 Dynamics on line-drawing objects

The translating bar stimulus

The dynamics ofmotion integration and the role of form-based

disambiguationmechanisms canbe illustratedwith the simplest

example of the aperture problem inmotionperception: the trans-

lating bar stimulus detailed. For short durations, its perceived

direction is biased towards the direction orthogonal to its ori-

entation (see Section 1.1). Consistently, it has beendemonstrated

that initial tracking direction exhibits the same bias (see Sec-

tion 2.2).
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Fig. 6.1 Temporal evolution of our
model estimated direction errorw(t)
on a 45° tilted bar, moving rightward
(diamonds). For comparison, we replot-
ted human and macaque tracking error,
as well as perception error from Fig. 2.2
(squares, stars, disks). The optical flow
m2(t, x) is shown at 200 and 600 ms.

Wedefine the observed direction error as thedifference between

the true translation direction of the object and the observed

motion direction. Such velocity error has often been used to

describe the dynamics of motion integration at these differ-

ent levels: a population of mt neurons,34,171,172 the perceived

direction144,51,205 or the tracking direction of smooth pursuit
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eye movements241,35,158 (see Fig. 2.2).

It should be noted that since the observed direction error is

an angular error computed from motion, it is highly imprecise

during the first hundred milliseconds. At that period of time,

responses are slow, noisy and rapidly varying so that computa-

tion of the effective angles becomes unstable.

In order to compare our results with experimental data, we

define the estimated direction error as the difference between the

angles of the true translation direction and our global readout

w(t). As illustrated in Fig. 6.1, applying our model to the trans-

lating bar stimulus reproduced several of the phenomena de-

scribed above. Initial estimation was dominated by local am-

biguous (1d)motionmeasurements.We founda smooth 2dmo-

tion diffusion inside the bar as shown by the gradual evolution

of the velocity fields. Thus our model can solve the aperture

problem at both local and global scales. After a short period

of time where the direction error stays constant at about 40°,

the estimate of the global motion converged to the true dir-

ection—a null direction error—with an exponential decay. It

should be noted that the dynamics observed at output stage of

our model closely mimics the experimental data measured for

both pursuit and perception.

Motion anticipation

In themotion anticipation experiment, we record the response

of a v1 neuron in ourmodel to the translating bar stimuluswith

different initial spatial position (see Fig. 6.2). The further the

initial position is from the v1 receptive field, the sooner the v1

response starts. Thus, a motion anticipationmechanism seems

to enlarge the receptive field of the neuron in direction of the

initial bar position. Yet such a mechanism is highly limited by

our purely multiplicative feedback.

Variations of the translating bar

Next, we introduce two variations to test the model behaviour.

First, we show in Fig. 6.3 (a) the changes in direction error

when the bar is cut into an increasing number of line segments.
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Fig. 6.2 Anticipation in our v1
model cells. (a) Translating bars are
presented from different distance to
the recorded cell. (b) The farther the
distance, the sooner the v1 response
starts.

Introducing more line-endings both reduced the initial bias in

the global motion estimation (from 44 to 32°) and produced a

faster exponential decay of the direction error, a results found

in the psychophysical literature.144 Similar changes were repor-

tedwhenfilling amoving diamondwith 2d texture elements.241

On the contrary, smoothing the luminance profile by applying

a Gaussian filter along the bar orientation reduced the contrast

of line-endings (see Fig. 6.3 (b)) and thus resulted in a larger ini-

tial bias, reaching the asymptotic error of 45° and a somewhat

longer time constant for error reduction. Similar results were

reported with smooth pursuit eye movement in humans.240
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Fig. 6.3 Varying strength of 2d
motion cues. (a) A tilted line is cut
into small segments, introducing
more line-endings. Direction error
is plotted against time for different
numbers of segments in the tilted
line. (b) A tilted line is filtered with an
elongated Gaussian window, which
reduces contrast of the line-endings.
The smoothed bar elicits larger initial
direction error – larger bias – and a
slower time course for computing the
exact translation of the bar.

Second, we show in Fig. 6.4 (a) how the early direction er-

ror depends on the level of noise added to the input stimu-

lus. We considered additive Gaussian noise with different vari-

ances. The early direction error was estimated at a fixed time

t = 250 ms, around the steepest decrease.

Similar to the effects of contrast which have been observed

in bothpsychophysical studies51 andbehavioural studies,241 higher
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levels of noise resulted in larger initial biases. Moreover, the

neural solutionof the aperture problemwas slower. Similar effects

can be observed by changing the input gain of the model.
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Fig. 6.4 (a) Early direction error
as a function of the variance of the
Gaussian noise added to the input.
Similar to the effects of contrast which
have been observed in both psycho-
physical studies51 and behavioural
studies241, higher levels of noise resul-
ted in larger initial biases. (b) Direction
error dynamics on the translating bar:
Comparisons between Simoncelli and
Heeger's model208 and ours.

Still ourmodel performsmuch better than the staticmodel

of Simoncelli and Heeger 208

that we use for comparison. Output of their model is plot-

ted as continuous dotted line in Fig. 6.4 (b). First, our model

predicted a larger initial bias, which is more consistent with

psychophysical and behavioural data. Second, thanks to its dy-

namics, our model can to solve the aperture problem despite

the fact that only one 1d edge was present in this simple stim-

ulus, contrarily to the model of Simoncelli and Heeger.

Rotating ellipses

To conclude this line-drawing section, we briefly mention that

similar psychophysical observations with other types of line-

drawingobjects.143,204,154Ouroutputwas always consistentwith

experimental data, for both initial bias estimate and time course.

One interesting example is given by rotating ellipses.244 Weiss

and Adelson248 investigated motion perception with this type

of motion stimuli to probe non-local constraints on models of

human motion analysis. The authors showed that narrow and

fat ellipses are perceived differently at slow speeds. With nar-

row ellipses are correctly perceived as rigidly rotating, fat ones
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are perceived as deforming non-rigidly with a strong bias to-

wards the directions orthogonal to the long axis of the ellipse.

As illustrated in Fig. 6.5, ourmodel reproduces this behaviour as

shown by the crude illustration of the velocity flowfield. Global

motion estimation changed from rotation to expansion with

respect to the aspect ratio of the ellipse. With fat ellipse, ex-

pansion was found along the long axis of the object. These dy-

namics were found in absence of the form layer as well.

Fig. 6.5 Model response to the
gelatinous ellipses. (a) We first process
a thin ellipse of ratio 9:20 and the res-
ulting motion (b) is compatible with
rotation. (c) We then process a thick
ellipse of ration 3:4 and the resulting
motion (d) is a deformation incompat-
ible with rotation left downward yellow
patch and violet upward right patch
should be inverted, and not pointing
towards the diagonal line.

6.2.2 Dynamics of pattern motion using plaids

Plaid patterns have been largely studied to elucidate 2Dmotion

integration both at psychophysical level2,79,92,260 and physiolo-

gical level.162,194 One interesting aspect of plaid motion is that,

depending on the relative direction of the two components,

different perceived directions can be predicted from the differ-

ent computational solutions proposed so far: vector averaging

(va), intersection-of-constraints (ioc) or 2d feature tracking.Moreover,

recent studies showed that direction tuningof pattern-selective

cells in area mt shift from components to patterns motion dir-

ection over several dozens of milliseconds, further illustrating

the fact that solving the aperture problem is a dynamical process.171,211

Suchneuronal dynamics could explainwhyperceiveddirection260

as well as eye tracking direction151 shift over time from the vec-

tor average prediction to the true pattern motion direction.

Therefore, ourmodel shows a similar dynamicswhen tested

with type i, type ii79 aswell as unikinetic plaid patterns.92 Fig. 6.6 (a)

illustrates the model output in response to a type ii plaid such

as used in 40. These plaid patterns have been used to separ-

ate the predictions made by either the vector average or the

ioc models. Initial global estimate of the model output was

nearly aligned with the va prediction. Over time, this estim-

Experimental results 61



ate gradually shifts toward the ioc prediction, so that at the

end of the simulation, the true direction of the plaid pattern

is decoded, independently of the componentmotion direction.

Fig. 6.6 (b) illustrates the model performance for another type

of plaid. With unikinetic plaids, the ioc solution cannot be ap-

plied since only one component is drifting. The va solution col-

lapses to the 1d direction of the drifting component. However,

reliablemotion information can be extracted by tracking the 2d

features (blobs) created at the intersections between the static

anddrifting gratings. Again, themodel output dynamically evolved

from the va solution (i.e. the 1d motion direction) to the ac-

tual pattern motion direction as predicted by the 2d features

tracking model. Interestingly, we found that 2d motion direc-

tion was not seen from earliest model output. The influence of

motion signals biasing the global estimate towards the global

2d pattern motion was seen only after a fixed delay (indicated

by δ in Fig. 6.6 (b)), similar to that observed in humans151 and

monkeys.18
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Fig. 6.6 Model responses to plaid
pattern motion. (a) Model output ob-
tained with a type ii plaids where the
two component directions are separ-
ated by 25°.40 The temporal dynamics
is illustrated by the instantaneous out-
put direction at three different points
in time (triangles). In the same plot, the
predictions made by the vector average
(va) and intersection-of-constraints
(ioc) models are illustrated. Note that
ioc response is similar to 2d features
tracking response in this case. (b) Re-
sponse to an unikinetic plaid.151 The
initial response following the moving
plaid switches with time. Note that we
observe a delay δ between the vertical
and horizontal responses as described
for eye movements.151

6.2.3 Motion integration on gratings with different apertures

Other aspects of 2dmotion signals integration can be investig-

atedwith gratings drifting through different kinds of apertures.

For instance, when a moving grating is seen through a rectan-
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gular aperture, human observers report a perceived global mo-

tion direction that is tilted towards the longer axis of the aper-

ture. This phenomenon is known as the barber pole illusion.243

The bias depend of the aspect ratio, defined by ratio between

the long and short axes of the aperture, and increases with it.

Moreover, humanocular tracking153 aswell as neuronal responses,

gradually evolved from local motion direction (i.e. orthogonal

to grating orientation) to globalmotion direction (i.e. along the

aperture long axis).172

Fig. 6.7 Model response to upward
moving gratings presented behind
various aperture shapes. For a given
row each column shows respectively
one image of the stimulus, and three
representation of the motion field
for the initial response, intermediate
response, and steady state. We tested
the following apertures: (a) Tilted
rectangular aperture with an aspect
ratio of 3:1. (b) The aperture edges
are indented to locally change the
direction of terminator motions. (c)
Circular aperture. (d) Square aperture.
(e) Slightly smaller square aperture.

Ourmodel reproduces these different aspects ofmotion in-

tegration for barber poles (see Fig. 6.7). In all the tested stimuli,

a horizontal grating was drifted in the upward direction. Only

the shape of the aperture throughwhich the gratingwas viewed
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was changed. As illustrated by velocity flow fields obtained at

different times, motion flow was first dominated by 1d motion

information, but later all local measurements became coherent

with the 2d perceived direction. This dynamics can be further

illustrated by plotting the time course of the direction error:

the estimated global motion was first driven by grating motion

direction but then slowly rotated until being aligned with the

long axis of the aperture.

This role of local 2d motion cues in driving the final per-

ceivedmotionwasnicely demonstrated by indenting the longer

axis of a barber pole.188,125,153,143 Perceived direction changes to-

wards the grating motion direction as the size of the indenta-

tion increases. Our model simulated such behaviour. As illus-

trated in Fig. 6.7 (b), changing the aperture local geometry in-

troducednew localmotion signals, which dominated the global

motion direction. As a consequence, global motion remained

coherent with the grating motion direction. Note that similar

results were also obtainedwith gratings presented behind a cir-

cular aperture (see Fig. 6.7 (c)).

Barber pole motion stimuli with an aspect ratio of 1:1—a

square aperture—unveil two interestingphenomena. First, short

stimulus duration results in a perceived motion direction, as

well as a tracking direction that are consistently aligned with

grating motion direction across trials.50,153 Second, with long

motiondurations, perceiveddirectionbecomesmulti-stable, al-

ternating between grating motion direction and motion along

one or the other axis of the aperture. Castet and colleagues50

reported stochastic fluctuations in the perceived direction of

barber poles with aspect ratio 1:1, yielding to a broad distribu-

tion in performance when computed over a large set of trials.

Then, perceived direction spanned between the three possible

solutions aforementioned. We ran successive simulations with

a barber pole of constant aspect ratio 1:1 but introducing small

fluctuations in either the input image sequence I or the input

local motion k1. For instance, slightly changing the size of the

square aperture resulted in a dramatic change in global motion

estimation, switching from left- to right-upward direction (see

Fig. 6.7 (d–e)). Introducing a small additive Gaussian noise (av-
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erage: 0.5, variance: 0.02) into k1 resulted in similar switches.

Thus, small changes in stimulus characteristics can lead to totally

different estimates of global motion in our dynamical model.

6.3 discussion

In the present study, we proposed a motion integration model

to solve 2d motion integration and segmentation. We imple-

mented and applied our two layers dynamical system to syn-

thetic motion stimuli with the goal to reproduce several key

phenomenaof 2dmotion integration that have beendocumented

by psychophysical, behavioural and neurophysiological studies.

In particular, we reproduced the temporal dynamics of motion

integration and its dependency upon stimulus characteristics.

6.3.1 Dynamics of motion integration

Our model successfully reproduced the temporal dynamics of

2d motion integration for a large set of motion stimuli used in

investigating visual motion perception and its neuronal basis.

First, for lines, line-drawing objects and barber poles, we found

that during the first iterations almost no contribution of 2d

motion signals as generated by line-endings or terminators can

be seen. This is consistent with the observations made in area

mt that early direction tuning of cells is driven by component

motions.171,211,172 At behavioural level, Masson and colleagues

found similarly that the earliest phase of ocular following re-

sponses to either unikinetic plaids or barber poles is only driven

in the direction of grating motion.153,151,19 The origin of such

delay between 1d and 2d driven responses has been highly con-

troversial. Some authors attributed it to the delay seen in the

emergence of end-stopping properties of v1 neurons. This tem-

poral dynamics might be related to the timing of the underly-

ing centre-surround interactions.14 However, the relative con-

tribution of both lateral and feedback recurrent connectivity to

the temporal dynamics of centre-surround interactions is still

unclear.8

Next, our model can reproduce the time course of 2d mo-

tion integration as evidenced by a large number of studies at
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psychophysical,260,51,144 behavioural154,241,35 andneurophysiological171,211,172

levels. In brief, the estimate of global motion, as computed by

our simple readout mechanism, gradually shifts over time. Fol-

lowing an exponential decay, direction error decreases from the

initial bias towards 1d motion (or its vector average for mul-

tiple edges/components pattern) to the actual 2d translation of

the object. Both the initial bias and time constant of the decay

varywith contrast of local non-ambiguous features, line length,

barber pole aspect ratio and soon.All these scaling factors affect

the dynamics of lateral diffusion. Hence, the recurrent dynam-

ics, which is needed for the diffusion of motion information,

can largely explain the observed dynamics of motion integra-

tion. Our dynamical model provides a platform to further in-

vestigatewhich biologically realistic neuronal architectures can

underlie such computation.

6.3.2 Relations to other approaches

Several other models have been designed to simulate the tem-

poral dynamics of 2d motion integration. A first attempt was

made byWilson and colleagues to explain the transition of per-

ceived direction between vector average and ioc solutions for

type ii plaids in human observers.255 Thismodel was further ex-

panded to account for barber pole and linemotionperception.147

As in any two-motion pathway model, they postulate that 1d

and 2d motion features are extracted through parallel path-

ways, the later being delayed. Such delay, and the winner-take-

all competition performed at the integration stage as thought

to be sufficient to explain the temporal dynamics of 2d motion

integration. Thesemodels do not implement any diffusion pro-

cess and therefore globalmotion does not correspond to homo-

geneous velocity flow fields. They clearly miss the spatial prop-

erties of motion integration and therefore cannot account to

geometrical changes such as line lengths or barber pole aspect

ratios.

Pack, Grossberg and Mingolla173 modelled various popula-

tions inside the cortical areas mt and mst to account for the

second phase of smooth pursuit: the maintenance of ongoing

pursuit movements while the image is fixed on the retina. In
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ourmodel we focus on the first stage of the pursuit focusing on

motion direction and velocity estimation.

6.3.3 Limitations of the model

We have shown that our model can qualitatively reproduce the

dynamics of several key phenomenon of 2d selective motion

integration. We successfully applied it on a larger set of mo-

tion stimuli than competing recurrent models.24,23 However,

the current version of model suffers from two limitations.

First, we cannot model the well-known effects of contrast

upon 2dmotion integration. Othermodels had also difficulties

in implementing the effects of contrast since almost noneneuro-

physiological experiments have been conducted to investigate

the effect of global contrast upon 2dmotion integration.Weiss

and colleagues250 showed that a Bayesian model of motion in-

tegration can mimic the effect of lowering contrast upon the

perceived direction. However, their model was not intended to

process moving images and therefore lower contrast was dir-

ectly modelled by a higher variance of the Gaussian distribu-

tions forming the velocity likelihoods. Motion energy filters in

ourmodelweremade insensitive to contrast and, as a consequence,

we cannot account for these effects.Moreover, the spatial sum-

mation properties of v1 and mt units were not defined as being

sensitive to contrast, a factor that could change the dynamical

properties of motion diffusion. We attempted to simulate the

effect of contrast by addingwhite noise to the input frames.We

found that large additive noise both increased the initial bias

towards the vector average prediction and slightly sloweddown

the time course of direction errors. Both results are consistent

with behavioural results.154,241,35 However, a full model should

incorporate contrast-dependant localmotionfilters (such as the

one described by Escobar73) as well as contrast-dependent spa-

tial integration mechanisms as found in areas v1201 and mt.175

A second limitation of themodel is its disregard for the role

of other segmentation cues such as luminance, texture or dis-

parity. In the next chapter we investigate the role of luminance

smoothness as a segmentation cue for motion integration.

Discussion 67





Chapter 7 Luminance-gated diffusion

In this chapter we propose that motion integration is gated by lu-

minance information. In Section 7.1 we present previous proposals

in cross-modal interactions which are based on junction detectors.

The model is described in Section 7.2 as an extension of the ap-

proach presented in the previous chapter. The implementation de-

tails follow in Section 7.3. Section 7.4 presents the new results ob-

tained with this model. We conclude in Section 7.5 by linking our

approach to computer vision algorithms as well as other biological

models, and end by discussing its biological interpretation.

main contribution

� A luminance-gated mechanism segregating objects

7.1 introduction

Motion integration is intrinsically a spatial process. Since most

of thenatural objects are rigid, propagatingnon-ambiguousmo-

tion information along edges as well as inside surfaces is an es-

sential aspect of motion integration.106,164,98,248

Considering the form information for motion integration

is also a necessary condition to explain some experimental res-

ults, as we discussed in Section 1.3.

The role of motion diffusion process has only been invest-

igated in a small number ofmodels such as the one ofGrossberg

and colleagueswhere local formandmotion cues are integrated

through recurrent diffusion.94,32 The various versions of their

model succeed to solve the aperture problem inmany different

instances of motion stimuli investigated psychophysically.143,51

However, they heavily rely onmany different sub-types of local

feature detectors and a huge number of cortical areas.

A similar solutionwasdevelopedbyBayerl andNeumann,22,23

albeit with a more simple and realistic motion computation al-
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gorithm. Still, the strategy used formore complex stimuli relies

on finding local 2d features and excluding some of them (for in-

stance t-junctions) from the integration process (the extrinsic

junctions, see Section 1.3.1). Yet, such computational rules have

not yet beendemonstrated in the cortical processingof 2dmov-

ing patterns.

Here,wepropose an extensionof our dynamicalmodel provid-

ing a simple solution for 2dmotion integration combining low-

level cues about visual surfaces properties such as luminance

smoothness and local features motion. Instead of implement-

ing a set of highly selective feature/shape analysers, our approach

favours an abstract representation of form information, based

on luminance smoothness in the image.

Such an abstract description fuses both contour and sur-

face representations, which have been found in cortical areas

v1 and v2.196,122,221 It also offers a simple solution for the edge

versus surface (or global) smoothness constraints usedbydiffer-

entmodels ofmotion integration.248Wepropose that both rep-

resentations contribute in the gating of motion information

diffusion in order to solve the aperture problem both within

and across apertures.

7.2 model

Weextend the dynamicalmodel developed inChapter 6 by pos-

tulating that the brain takes advantage of another low level cue,

luminance smoothness along edges or surfaces, to gate recur-

rentmotiondiffusion.Thus, contrary to previous recurrentmod-

els of motion integration using isotropic diffusion, our model

dynamically constrains thediffusionofmotion information along

some specific orientation in the image. Indeed, perceptual stud-

ies of contour integration and physiological studies of receptive

field surround effect in cortical layer 2/3 neurons provide evid-

ence for facilitatory effects that aremuch stronger in regions of

visual space that lie along the axis of preferred orientation than

in region off axis.165,80,186,121

There are evidence for involving both lateral connections36,216

and recurrent input132,131 from higher computational stages in

these non-isotropic interactions. Our goal herein was not to
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model the detailed connectivity (albeit this might have a pro-

found impact of the exact temporal dynamics) but rather to ex-

plore how such luminance-gated motion diffusion can be use-

ful in a large class of object motion integration and segmenta-

tion.

Our model is represented in Fig. 7.1. The motion integra-

tionbetweenp1 andp2whichwas a simpleGaussian inChapter 6

is now gated by luminance information from a new cortical

layer processing form information, φ. Its activity is defined by

a function

Motion integration

MT

V1

Local motion

V2

Fig. 7.1 Luminance-gated motion
integration. A form layer φ gates the
integration of information between p1

and p2, thus implementing anisotropic
diffusion.

φ(t, x, θ) ∈ R+×Ω× [0, 2π) → R+. (7.1)

and represents the local orientation of the luminance profile

from position x in the direction θ. Note that function φ is an

abstract way to encode form information. Such function can be

seen as a description of v2 neuron properties which can repres-

ent local orientation of edges from changes in luminance138 but

also can encode surface brightness.178 In future development of

the model, such function can also be extended to form inform-

ation extracted from other cues such as colour or texture.

The integration from p1 to p2 is now defined by:

∂p1

∂t
= −λ1p1 + (1− p1)

∣∣∣∣λf1k1 + λbk1p2 − λl1Gσl
1

x∗
∫
V

p1(t, x,w) dw
∣∣∣∣
+

,

(7.2)

∂p2

∂t
= −λ2p2 + (1− p2)

∣∣∣∣λf2 ∫
Ω

K(t, x,y)p1(t,y, v) dy− λl2Gσl
2

x∗
∫
V

p2(t, x,w) dw
∣∣∣∣
+

,

(7.3)

where K is defined by:

K(t, x,y) = Gσf
2
(x− y)φ(t, x, x̂y), (7.4)

where x̂y denotes the angle between the vector−→xy and the ho-

rizontal axis.

This luminance-gated diffusion, is the main novelty of our

model. Rather than diffusing motion information isotropically

from p1 to p2, we defined an anisotropic diffusion where p1 is
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integrated in a spatial neighbourhoodusing theweightK(t, x,y),

defined in (7.4). This weight is composed of two terms.

The first term, Gσf
2
(x − y), weights the connectivity de-

pending on the distance between x and y. The second term,

φ(t, x, x̂y), is related to the form information. In this chapter,

we propose that the integration depends on the form so that

the layer φ is defined by:

φ(t, x, θ) =

∫
Ω

Gσx(x−z)Gσθ
(θ−x̂z)Gσs(I(t, x)−I(t, z)) dz.

(7.5)

Fig. 7.2 Oriented spatial neigh-
bourhood around x in the direction θ

used to compute φ. Luminance in this
oriented neighbourhood is compared
with the luminance at the origin x.

The layer φ describes the luminance smoothness at position x

and along the direction θ. In (7.5), the termGσx(x−z)Gσθ
(θ−

x̂z) defines an oriented spatial neighbourhood around x (see

Fig. 7.2). The last term, namely Gσs(I(t, x) − I(t, z)), corres-

ponds to a brightness similarity measure describing form in-

formation using luminance as a criterion.

A representation of the layerφ for all the directions and for

a given set of sampled positions is shown in Fig. 7.3. The main

property of φ is to facilitate integration inside similar spatial

structures of the image, a property shared by neurons as ob-

served in bothpsychophysics204,142 and cell recordings inmacaque

area mt.113

Fig. 7.3 Diffusion of information
for different spatial structures. Upper
row gives a set of input images with
different luminance distribution.
Lower row shows a representation of
K indicating for a given set of sampled
position, the weight by which their
neighbourhood is integrated.

Another interesting property is that the extension of the

integration also depends on the local contrast: The neighbour-

hood becomes wider at low contrast than at high contrast sim-

ilar to the changes in receptive field size with contrast, as ob-
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served for instance inmacaque areamt.175 Such abstract repres-

entation of form information presents several key advantages

in the context of 2dmotion integration.Motion integration in-

side spatial structures is not only performed along borders (see

Fig. 7.3), but also propagates inside iso luminance regions.

7.3 implementation

(7.2) λ1 = 2.0 λf1 = 1.0 λb1 = 24.0 λl1 = 4.0 σ1 = 2.0
(7.3) λ2 = 2.0 λf2 = 16.0 λl2 = 4.0 σ2 = 2.0
(7.4) σf

2 = 8.0
(7.5) σx = 12.0 σθ = π/8 σs = 0.4

Table 7.1 Chosen parameters
setting.

To speed up the simulationswe used the gpgpu technology.

Since the anisotropic diffusion process depends on input stim-

ulus, our model requires high computational cost. Thus con-

ventional cpu implementation is too slow for performing ex-

tensive model testing. We were able to take advantage of the

parallel nature of our model, where the same kind of computa-

tion is done at every spatial position. In otherwords, thismethod

and the way it was implemented, allows to process arbitrarily

large stimuli, in pixel resolution, which is not the case in re-

cent proposed approaches sometimes limited to 60×60 binary

images.32

7.4 results

Previous models of form-motion integration have shown that

form information is important for integrating motion across

apertures. Here, we investigated how luminance-gated motion

diffusion can be used in integrating local motion signals that

belong to a given object. Our model can reproduce some key

aspects of motion integration versus segmentation by testing

its response to a large class of motion stimuli used in both psy-

chophysics and neurophysiology.

In this chapter, we focus on two aspects of motion integra-

tion and segmentation. First,motion signals are integratedonly

along rigid structure and are not captured by motion from the

surrounding.113,205 Second, a large bulk of psychophysical data
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suggests that motion features are discarded when they do not

belong to themoving surface (i.e.when they are extrinsic).204,143,206

Our model must then be able to selectively integrate motion

signals that belong to the moving surface of interest and avoid

propagation of local 2d motion signals that are not intrinsic to

it.

Fig. 7.4 Model response to the
motion stimulus proposed byin area
mt. (a) A square moving diagonally
downward and to the right is presented
together with a patch of moving dots
instead of the upper segment of the
square (see text for more details). (b)
Initial model response illustrated by
velocity field,m2, computed over the
first few images showing that edge
motion estimates are biased by the
aperture problem. (c) Result obtained
with luminance-gated diffusion. (d)
Result with isotropic diffusion. (e)
Perceived directionw(t) computed
inside the dotted region.
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7.4.1 Preventing capture: the dotted square stimulus

In Fig. 7.4, we considered the stimulus proposed by Huang and

colleagues113 and we tested how selective is motion integration

performed by areamtneurons. The stimulus is described as fol-

lows: a squaremoving in the lower right direction has its upper

edge removed and replaced by a set of points moving randomly

downward; the velocity of themoving points spans the velocity

distribution existing at the centre of an edge due to the aper-

ture problem.Ourmodel gives results similar to those observed

with mt neurons recordings: the ambiguity is not solved at the

location of the missing edge and the velocity field is thus aver-

aged as a downward motion. Furthermore, the aperture prob-

lembiased the initialmotion direction at the centre of the three
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edges (see Fig. 7.4 (b)). As illustrated in Fig. 7.4 (c), the aperture

problem was correctly solved so that at the end of the simu-

lation, all three edges moved coherently along the 2d transla-

tion axis, i.e. diagonally downward and to the right. Notice that

motion direction of the patch remained unaffected at all itera-

tions. In brief, two sets of object motion coexists without cap-

ture. However, in the isotropic diffusion experiment, random

dot patchmotion was captured by downward drift of the edges

(compare Fig. 7.4 (c) and Fig. 7.4 (d)).

7.4.2 Influence of context: the chopsticks

In the next example, we considered the chopstick illusion in

order to illustrate the influence of form information onto the

selective integration of motion information.9 The first stimu-

lus consists in two horizontally translating bars, as shown in

Fig. 7.5 (a). Thus we introduce two sets of non ambiguous mo-

tions arising from the end of lines (i.e. horizontal motion), and

from the bars intersection (i.e. vertical motion). In Fig. 7.5 (a),

we illustrate the velocity fieldm1 estimated at different times.

Our results are coherent with the phenomena reported by psy-

chophysical experiments: under these conditions, two bars are

perceived asmoving in opposite directions.9 We also show that

velocity flowfields are coherent at the twodifferent spatial scales

m1 andm2 showing that feedback allows themodel to compute

coherent motion representation at different stages along the

motion pathway. Removing the φ layer, results in the opposite

motion perception: the computed velocity field corresponded

to two bars moving coherently upward, forming a single cross

being translated vertically.

In the second stimulus, line-endings were made extrinsic

by placing two horizontal occluders at the ends of the chop-

stick (see Fig. 7.5 (b)). In this case themotion percept consists of

a single upward translation. Applying the proposed luminance-

gatedmotiondiffusionwas enough to reproduce this phenomenon.

Fig. 7.5 (b) illustrates the temporal dynamics of motion integra-

tion for the occluded chopstick motion stimulus. Horizontal

motion features arising at the intersections between lines and

occluders are normally extracted (seem2 flowfields) but are not
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Fig. 7.5 Model response to chop-
sticks motion. (a) Two tilted and
crossing bars are translating in oppos-
ite motion direction resulting in two
horizontal perceived motions.9 We
display the velocity fieldsm1 andm2

to illustrate the time course of motion
computation at two different spatial
scales. (b) Model response to occluded
chopsticks where two horizontal
occluders of different luminance dra-
matically change the motion percept,
leading to a vertical perceived motion.
We illustrate model performance as
the velocity fieldm1 computed at three
different times. Upper and lower rows
illustrate the results obtained with
luminance-gated motion diffusion, or
isotropic diffusion respectively.

(a)

(b)

Image 1 Image 7 Image 19
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propagated inside the line-drawing figures. On the contrary, 2d

motion signals arising the intersection between the two lines

were propagated along the edges so that after 20 frames, the

two bars are perceived asmoving coherently in the upward dir-

ection.

Applying an isotropic diffusion resulted in adramatic change

in the output velocity fields: 2dmotion signals arising at the in-

tersections between edges and occluders were now propagated

both along the chopsticks and the edges of the aperture. Such a

solution would correspond to the perception of two sticks slid-

ing over each other. Moreover, bars motion captured the oc-

cluding edges. This result demonstrates the role of the layer φ

to implement contextual modulation ofmotion diffusion, sim-

ulating different percepts such as coherent (i.e. one single ob-

ject) or incoherent (i.e. overlapping objects) motion of the two

bars.

7.4.3 Geometry controlled diffusion: diamonds

Another challenging set of experiments was provided by the

study of Lorenceau and Alais142 as illustrated in Fig. 7.6. In the

original psychophysical study, rotating diamonds like stimuli

were displayed to the subjects for long durations. For each stim-

ulus, the subject were asked if the rotation was perceived as

clockwise or counter-clockwise. The percentage of correct re-

sponses have been replotted in Fig. 7.6 (light grey bars) for the

10 different shapes used in this study. The authors found two

groups of objects, with performance above and below 80% (ho-

rizontal dotted line).

To obtain a result comparable to the rotation coherence de-

scribed in the original paper,142 we defined a rotation coher-

ence readout as follows. First, we decomposed local motion as

given by the activity measurements of our model into a radial-

rotational space. The biological plausibility of such a decom-

position, as well as its links to human motion percept, have

already beendescribed byBarraza andGrzywacz.16 This decom-

position corresponds to a simple change of coordinates. Then,

we computed, via a spatio-temporal average, the global ratio of

the rotation over radial motion. Fig. 7.6 plots this ratio for the
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same 10 shapes (dark grey bars). Overall, the different shapes can

be grouped similarly into two different sets of stimuli, which

are consistent with those obtained from psychophysical exper-

iments. Thus, the model performed better for stimuli that we

perceived as being coherent, suggesting a similar solution for

motion integration across apertures. However, we found an in-

triguingmismatch between two stimuli out of ten (as indicated

by the two symbols * in Fig. 7.6), most probably because of the

distance between the corresponding line-endings.

Fig. 7.6 Results on the whole set
of stimuli presented by Lorenceau
and Alais.142 All the stimuli are made
of four edges varying a diamond
shape and are numbered according
to the original paper. The light grey
bars represents the correct rotation
response from the psychophysical
experiments (see rightward). The dark
grey bars corresponds to the responses
of our model (see leftward axis).

32 87 64 19510

502

4

6

8

10

12

*

*

60

70

80

90

100

R
o
ta

ti
o
n
 c

o
h
er

en
ce

 (
o
u
r 

m
o
d
el

)

%
 c

o
rr

ec
t 

re
sp

o
n
se

 (
L
&

A
, 
2
0
0
1
)

7.5 discussion

7.5.1 Links to computer vision approaches

The role of diffusion for motion estimation has been investig-

ated thoroughly in the computer vision community. There ex-

ists a huge literature concerning the estimation of the so-called

optical flow, which is how to estimate accurately the appar-

ent velocity field from videos.217,168,17,3 Almost all of these ap-

proaches rely on the brightness consistency assumption lead-

ing to the classical optical flow constraint (ofc)that relates the

gradient of brightness to the components of the local flow to

estimate the optical flow. Because this problem is ill-posed, ad-

ditional constraints are usually required.

For example, on can constrain the smoothness of the solu-

tion: the goal is thus to find a compromise between respecting

the ofc and having the required degree of smoothness. To do

so, one possibility is to define a variational formulation: In this
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direction, let us mention for example the pioneering work by

Horn and Schunck111 where smoothness was defined by min-

imising a quadratic term of the velocity components gradient.

The key point here is that choosing a degree of smoothness is

equivalent to define the penalty term which will then determ-

ine how information is diffused. Interestingly, diffusion is very

related to the integration processes discussed in this chapter

and one can see some analogies. For optical flow, many nonlin-

ear diffusion operators were proposed to prevent models from

smoothing the solution across theflowdiscontinuities.6,259,12,246

But there is yet another set of approaches using also form/lu-

minancemodulation for thediffusionprocess. For example,Hildreth107

presented amodel that calculates the velocity field of least vari-

ation along a contour in the scene, corresponding a contour

smoothness constraint. Similarly,Nagel andEnkelmann163 pro-

posed an oriented smoothness constraint inwhich smoothness

is not imposed across steep intensity gradients (edges) in an at-

tempt to handle occlusions. However, as a general observation,

models proposed in computer vision ignore the temporal dy-

namics of motion integration and never try to reproduce visual

system properties and behaviour.

7.5.2 Form modulation in biological models

Several biologically-inspiredmodels were designed to investig-

ate the role ofmotiondiffusion in the context ofmotion integration.56,32,23

These models are able to capture several aspects of motion in-

tegration such as thepropagationof feature tracking estimates.56,96

Some of thesemodels implement isotropicmotion diffusion by

using Gaussian distributions of activity both within layers and

between layers through recurrent connectivity.24,23 They can

simulate the final results of motion integration for simple mo-

tion stimuli but cannot render more complex selective motion

integration without the need of implementing complex rules

such as t-junctions motion cancellation or using distributing

motion signal across different depth layers.

Lastly isotropic diffusionmodel also fails to account formo-

tion grouping across occluders. To solve this latter aspect,Gross-

berg and colleagues introduced the idea of non-isotropic mo-
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tion integration that can be biased either by local form inform-

ation as well as by depth cues.32 A similar approach using depth

cues was proposed recently by.25 By doing so, the various ver-

sion of the model designed by Grossberg and colleagues, also

called formotionmodel, can solve someaspects ofmotiongroup-

ing within and across apertures and therefore reproduce the

perceived global motion direction observed with motion stim-

uli such as the occluded diamonds.204,142 or the chopsticks.9

Notice that form-motion interaction was used in their model

only to disambiguate motion information at the stage of area

mt. No feedback was implemented between areas mt and v1

within the motion pathway, so that local motion information

remains constant at the earliest stage ofmotion processing. Re-

current interactions between motion processing layers are im-

plementedbetween areasmtandmst toperformmotion group-

ing at the highest spatial scale. Notice also feedback connectiv-

ity does exist but only between area mt and the v1 form mod-

ule to solved local ambiguities in the static distribution of lu-

minance and thus uses motion information for improving 3d

figure-ground separation.

Moreover, the formotion model relies heavily on the as-

signment of each object to a given depth layer. To do so, the au-

thors implemented a complex architecture with six processing

stages in the formpathway and seven stages in themotionpath-

way. Multiple feed-forward and feedback interactions are im-

plemented at different levels32 and the model postulates the

existence of several types of highly specific form and motion

detectors. In contrast, in this chapter we proposed a minimal

model to understand how diffusion of motion information can

be constrained using some low-level form information such as

smoothness in luminance distribution. With only four layers,

our model can reproduce as many perceptual phenomena as

the formotion model. Our model also implements a dynam-

ical recurrent system based on (i) a generic mechanism for ex-

tracting local motion and (ii) a simple rule to constrain motion

diffusion. We believe that such a powerful model can then be

extended to understand how cortical architectures implement

more complex operations.
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7.5.3 Luminance smoothness: a simple rule for gating motion in-

formation

We implemented a simple mechanism of form modulation in

the context ofmotion integration. In particular, we did not im-

plement any complex local features detectors such as end-stopped

cells or dipole cells found in the literature.32 Here, the layer

φ indicates directions in the image along which luminance is

nearly uniform. Such an abstract definition of form informa-

tion incorporates a form representation aswell as a surface rep-

resentation. Neurons in the early stage of the visual cortex are

known to respond to a specific orientation in the luminance

distribution. As a consequence, they can signal a local contour

within their receptive field.116 Abrupt changes in the luminance

profile along the contour can be signalled by another type of

neurons found in area v1, end-stopped cells.115,172 Albeit neuronal

selectivity formore complex shapes canbe found at higher hier-

archical stages along the ventral cortical pathway, it is still un-

clear how many different elementary features detectors can be

found in the earliest stage of visual formprocessing.Most of the

existingmodels face this problem since they rely heavily on the

implementation of local features detectors to extract contours,

shapes and so on and then feed themotion pathway using some

non linear interactions.32 The layerφ used in the present study

only signals in isoluminance directions and uses this informa-

tion for guiding motion integration without the need of expli-

cit feature detectors. Moreover, it also implements some kind

of surface representation by signalling luminance smoothness

along awide range of direction. Noteworthy, the layerφ imple-

ments both contour and surface smoothness constraints using

luminance information and therefore offer a simple solution

for the need of using both smoothness constraints to efficiently

solve motion integration problems.248

Our model also offers a framework to investigate interac-

tions between luminance andmotionprocessingwithin the cor-

tical pathways. Recent studies have pointed out that luminance

information is encoded at the earliest stage of cortical processing.196,183,87

At population level, patches of neurons are strongly activated

by large stimuli of uniform luminance and are located in close
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relationshipwith the singular points in theorientation-preference

maps.122,221 Such representation of uniform surfaces based on

luminancedistributionhas been related to brightness perception.196

Our model suggests that such population of neurons can also

be involved in the spatial integration of motion information.

Interestingly, somemtneurons can signalsmotionover regions

of uniform luminance, corresponding to the centre of a disk

with edges located far outside the receptive field.170Onthe con-

trary, these cells remained unresponsive to a circle of same dia-

meter. Our model can reproduce this dynamics, thanks to the

layer φ.

In fact, using luminance information, and in particular the

fact that luminance profiles smoothly vary both along single

(edges) or multiple (surface) directions might be a very efficient

strategy for computing a global solution for objectmotion.There

is plenty of evidence suggesting a tight linkage between the

statistics of natural scenes and the designof the visual system.86

Considerable attention has been paid to the statistics of con-

trast distribution and its relationships with the properties of

elementary local features detectors.209 Recent studies have shown

the importance of luminance distribution as well149,84 and pin-

point its role in theneural dynamics of local informationprocessing149,87

but also in surface segmentation.82 Our model suggests that

furtherwork shall be conducted to better understandhow these

two aspects of visual objects (i.e. edges and surfaces) can beused

to gate motion integration performed within the v1–mt recur-

rent network.

The fact that our model can reproduce many psychophys-

ical observations using a wide range of object shapes (ellipses,

chopsticks, line-drawings) stresses the fact that luminance-gating

of motion integration is a simple but efficient implementation

of interaction between form information andmotion informa-

tion.Motion stimuli used by Lorenceau andAlais142 present the

advantages to have identical motion energy. The main differ-

ence between the ten stimuli illustrated in Fig. 7.6 was the geo-

metrical relationships between thedifferent segments.Ourmodel

produced similar grouping for the same subset of stimuli. This

further illustrates the fact that controllingmotion diffusion us-
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ing luminance smoothness can be a simple neural solution for

what has been described as form-dependant motion integra-

tion. Further workwill be conducted to investigate the detailed

implementation of this rule.

Lastly our model calls for further experimental and the-

oretical studies about non-isotropic diffusion of information

within or across cortical layers. The fact that point-like pro-

cesses such as orientation or direction extraction can be in-

terconnected along preferred axis within the cortical sheet has

been already suggested by both psychophysical and physiolo-

gical studies. For instance, the association fieldproposedbyHess

and colleagues postulate that contour integration involves fa-

cilitatory interactions between orientation-tuned neurons that

are collinear and aligned within visual space.80,104,105 The col-

linear facilitatory effects seen for contrast detection,186,187 static

anddynamical contours detection80 and apparentmotionperception88,203

are often through to be mediated by intra-cortical short-range

lateral connections.36,216

In ourmodel, we did not implemented specific features de-

tectors, neither their particular temporal dynamics. Also, we

did not implemented specific delay between motion and form

pathways although it have been shown that form-driven re-

sponses in area v2 are delayed relative to the fast mt neuronal

responses.130 Nevertheless, our simulations show that any sig-

nificant contribution of 2d features as emerging from the cor-

tical dynamics must be delayed, as compared to 1d-driven re-

sponses. This could be explained by the poor signal strength of

local 2dmotion signals as well as by the need to recurrent com-

putation to extract them. The earliest dynamics indeed reflects

the time needed for local directions corresponding to 2d fea-

tures to be amplified and to inhibit the other, nearby ambigu-

ous motion signals. Further work will investigate how the pre-

cise timing of 2dmotion integration can be simulated by imple-

menting the timing architecture of the early visual pathways.130,47

Discussion 83





Chapter 8 Neural fields model

Models developed in the previous chapters are expressed in a form-

alism sharing common notations with the literature, yet slightly

different. In order to facilitate the mathematical analysis we chose

the neural fields framework described in Section 8.1 for which the-

oretical tools already exists. In Section 8.2 we show how a new in-

tegral termbehaves asymptotically as a Laplacian operator. Section

Section 8.3 and Section 8.4 demonstrate the existence, uniqueness

and boundedness of the solution given by our neural field model.

We conclude in Section 8.5 by analysing the selection mechanism

in simplified version of the model.

main contributions

� Proofs of existence, uniqueness and boundedness of the

solution of our model.

� A numerical analysis of the mechanisms involved in our

models.

8.1 the neural fields formalism

Onemajor difficulty in observing or modelling the brain is that

its study involves a multi-scale and thus is a multi-disciplinary

analysis. There is a large variety of scales but there is no integ-

rativemodel yet covering all of themat once.60 Thus, one has to

choose a given scale and define a suitable mathematical frame-

work for that scale.

In this work we consider a neural mass scale, defining the

cortical activity at the population level, for the number of neur-

ons and synapses even in a small piece of cortical area is im-

mense. In order to describe cortical activity at the population

level, neural field models are proposed as a continuum approx-

imation of the neural activity.

Since the seminalworkbyWilson andCowan254,253 andAmari,7
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intensive research has been carried out to extend models and

study them mathematically. The general mathematical study

of such neural field equations can be very complex and is still

a challenging field of research.72,61,76,238 Applications in vision

of neural fields models include the work on spatial attention by

Fix, Rougier and Alexandre,83 on orientation tuning by Bressloff

and colleagues43 or Veltz and Faugeras,238 or on saccades gener-

ation by Taouali, Rougier and Alexandre.222

Our goal is to use this formalism for the problem of mo-

tion estimation. Following the general structure of the previ-

ous models, we describe the activity of a continuum of neuron

populations are denoted by:

pi : (t, x, v) ∈ R+×Ω× V → pi(t, x, v) ∈ R,

for i ∈ {1, 2}, where Ω is the spatial domain (a bounded open

subset ofR2) andV ⊆ R2 is the velocity space (the space of pos-

sible velocities). Thus, pi(t, x, v) is the average activity—more

precisely, the synaptic drive184—of the population correspond-

ing to position x and tuned to velocity v.

The general neural equation for an activity based model is:

∂p

∂t
(t, r) = −Λ·p(t, r)+S

(∫
Ω×V

W(t, r, s)p(t, s) ds+ K(t, r)

)
,

(8.1)

where p = (p1,p2)
T, r = (x, v) characterises the population

(position and velocity tuning), Λ = diag(λ1, λ2) is a matrix

describing the temporal dynamics of the membrane potential,

and S(x) = (S1(x1),S2(x2))
T is a matrix of sigmoid functions

defined by:

Si(s) = 1/
(
1+ e−s)

)
.

K is an external current that models external sources of excit-

ations (in our case, K = (λf1k1, 0)
T since there is no external

input to map p2). More importantly, W(t, r, s) describes how

the population s (at position y and tuned to the velocityw) in-

fluences the population r at time t.

In the right-hand side of equation (8.1), the first term de-

86 neural fields model



notes the passive activity decay (with rate λ1,2) when the input

features to the target population is switched off. The second

term denotes the cells activation functions (S1,2), a non-linear

transformation of the input.

In order to fit into the neural field framework, we rewrote

our dynamical model defined in Chapter 6 as follows:

∂p1

∂t
(t, x, v) = −λ1p1(t, x, v)

+ S1

(
k1(t, x, v)(λ

f
1 + λbp2(t, x, v))

− λl1Gσl
1

x∗
∫
V

p1(t, x,w) dw

+ λd1 (Gσd
1

x,v
∗ p1(t, x, v) − p1(t, x, v))

)
,

(8.2)

Motion integration

MT

V1

Local motion

Fig. 8.1 Schematic view of the
neural fields model. It follows an
architecture similar to the one defined
in Chapter 6.

∂p2

∂t
(t, x, v) = − λ2p2(t, x, v)

+ S2

(
λf2Gσ2

x∗ p1(t, x, v)

− λl2Gσl
2

x∗
∫
V

p2(t, x,w) dw

+ λd2 (Gσd
2

x,v
∗ p2(t, x, v) − p2(t, x, v))

)
,

(8.3)

The major change is the use of a sigmoid instead of the mod-

ulated positive rectification in previous models (6.1)–(6.2) and

(7.2)–(7.3). In addition, we also added a lateral diffusion term in

both equations, weighted by λd1,2. Such a diffusion term ensures

a smoother solution and its effect is studied in Chapter 10.

Note that the system defined in (8.2)–(8.3) does not com-

pletely fit into the classical neural field framework as defined

by (8.1). Indeed, our coefficient matrix W depends on p since

we model a multiplicative feedback – k1(t, x, v)p2(t, x, v).

8.2 lateral diffusion

Several models implemented gap junctions as lateral diffusion

through a Laplacian operator. In this section, we prove that
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such a Laplacian operator can be approximated by the diffusion

terms introduced in (8.2)–(8.3).

lemma 8.1 Given a Gaussian kernelGσ as defined by

Ae
−

(
(x−xo)2

2σ2x
+

(y−yo)2

2σ2y

)
,

with σ = (ρ,η), let us denote

A = Gσ
x,v
∗ p(x, v) − p(x, v), (8.4)

then we have

A =
ρ2

2

√
πD2

xp(x, v)+
η2

2

√
πD2

vp(x, v)+o(ρ2,η2, ρη). (8.5)

where D2
x,D

2
v denote the Laplacian operator in the physical

space and the velocity space.

Proof. Rescaling inside the integral in (8.4) we get

A =
1

π2

∫
R4
e−|y|2−|w|2(p(x− ρy, v− ηw) − p(x, v)) dy dw.

Then using a Taylor expansion of p (and assuming that p ∈
C3(R4)), we obtain

A =
1

π

∫
R4
exp(−|z|2)

[
− ρDxp(x, v) · x− ρDvp(x, v) · v

+
ρ2

2
D2

xp(x, v)(x, x) +
η2

2
D2

vp(x, v)(x, x)

+
ρη

2
D2

xvp(x, v)(x, v)

−
ρ3

6
D3

xp(x− ρθ1y, v)(y,y,y)

−
ρ2η

6
D2

xDvp(x− ρθ2y, v− ηθ3w)(y,y,w)

−
ρη2

6
DxD

2
vp(x− ρθ4y, v− ηθ5w)(y,w,w)

−
η3

6
D3

vp(x, v− ηθ6w)(w,w,w)
]
dy dw,

where z = (y,w), θi = θi(x, v, ρ,η,y,w) belong to (0, 1). But
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thanks to the moment conditions,∫
R2
exp(−|z|2) dz = π,∫

Ω

ziexp(−|z|2) dz = 0,∫
R2
zizjexp(−|z|2) dz = 0 (i, j = 1, 2, i 6= j),∫

R2
z2iexp(−|z|2) dz =

π
√
π

2
,

and we finally obtain (8.5).

8.3 existence and uniqueness of the solution

In order to study the well-posedness of our model (8.2)–(8.3),

let us consider the results presented in,75 for neural field equa-

tions. As described in theprevious section this term implements

amodulating feedbackdiffusion. By applying theCauchy-Lipschitz

Theorem we show that the addition of such a multiplicative

term to an activity-based neural field model maintains its well-

posedness properties. First we check that the assumptions of

the theorem are satisfied (8.2 and 8.3). Then, since the theorem

proves existence and uniqueness of the solution on an open

and bounded time interval, we show that this interval can be

extended to the full half real line using a continuity argument

(Theorem 8.2)

Let F be the set L2(Ω × V) of square integrable functions

defined on the product setΩ× V and taking their values in R,
and F2 = F × F. The basic idea is to rewrite (8.2)–(8.3) as a

differential equation defined on the set F2. With a slight abuse

of notation we can write pi(t)(x, v) = pi(t, x, v) and note p :

R → F2 the functiondefinedby the followingCauchyproblem:

p(0) = p0 ∈ F2, (8.6)

p′ = −Λp+ S (W(t) · p+ K(t)) , (8.7)

withp = (p1,p2)
T,K = (λf1k1, 0)

T, andS(x1, x2) = (S1(x1),S2(x2)).

TheoperatorW is the2×2 connectivitymatrix functiondefined
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by the four linear mappings from F to F:

W11 · p = −λl1Gσl
1

x,v
∗ p+ λd1 (Gσd

1

x,v
∗ p+ p),

W12 · p = λbk1p,

W21 · p = λf2Gσ2δv
x∗ p,

W22 · p = −λl2Gσl
2

x,v
∗ p+ λd2 (Gσd

2

x,v
∗ p+ p).

FunctionallyW11 andW22 correspond to lateral interactions in

maps v1 and mt, W12 denotes the backward connection from

mt to v1, and W21 denotes the forward integration from v1 to

mt. In the followingwenote f themappingdefinedby the right-

hand side of (8.7):

f(t,p) = −Λp+ S(W(t) · p+ K(t)).

Note that the timedependence in thedefinitionof f arises solely

from the function k1 that occurs in W12 and in K. We prove

the existence and uniqueness of a solution to (8.7) by proving

(i) that f maps I × F to F where I is an open interval contain-

ing 0 and (ii) that it is Lipschitz continuous with respect to the

second variable. This allows us to apply the Cauchy-Lipschitz

Theorem and to conclude that there is a unique maximal solu-

tion to (8.7), and that its interval of definition is an open interval

(−α, α) containing 0.

lemma 8.2 If k1(t) is measurable for all t ∈ I, fmaps I × F2

to F2.

Proof. Let p = (p1, p2) ∈ F2. If k1(t) is measurable for all

t ∈ I, so isW12 ·p2. All the other elements ofW ·p are simple or

weighted sums (convolutions) of a measurable function p and

thusW ·p ismeasurable. This implies that S(W(t)·p(t)+K(t))

is in F2 for all t ∈ I.

lemma 8.3 If k1(t) ismeasurable onΩ×V and bounded by k̄1
for all t ∈ I the mapping f is Lipschitz continuous with respect

to the second variable.
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Proof. We have

‖f(t,p) − f(t,q)‖ =

‖−Λ(p− q) + S(W(t) · p+ K(t)) − S(W(t) · q+ K(t))‖ 6

max(λ1, λ2)‖p− q‖+ S′m‖W(t) · (p− q)‖,

where S′ is the maximum value taken by the derivatives of the

sigmoids S1 and S2. ‖W(t) · (p − q)‖ is upper-bounded by a

constant times the sum of the four terms ‖Wij · (pj − qj)‖F,
i, j = 1, 2. Considering these terms we find two cases. The first

case involves a convolution by a Gaussian is easily dealt with

since:

‖G
x, v
∗ p‖F 6 k‖p‖F ∀p ∈ F,

where the constantkdepends on theGaussiankernel. The second

case concerns themultiplication by k1(t) inW12(t). Because of

thehypothesisk1(t)p2 belongs toF for all t ∈ I and ‖k1(t)p2‖ 6

k̄1‖p2‖F. This completes the proof that f is Lipschitz continu-

ous with respect to the second variable.

theorem 8.1 If k1(t) is measurable on Ω × V and bounded

by k̄1 for all t ∈ I there exists an open interval J = (−α, α) ⊂
I centred at 0 such that the Cauchy problem (8.6–8.7) has a

unique solution, hence is in C1(J,F2).

Proof. Thanks toLemmas8.2 and8.3 the conditions of theCauchy-

Lipschitz Theorem are satisfied.

8.4 boundedness of the solution

Then, thanks to the sigmoids, it is easy to show that this solu-

tion is bounded.

proposition8.1 The solutiondescribed inTheorem8.1 is bounded

for all t ∈ J.

Proof. The variation of constant formula yields:

p(t) = e−Λtp0(t) +

∫t
0
e−Λ(t−s) S(W(s) · p(s) + K(s)) ds,
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for t ∈ J, from which it follows that

‖p(t)‖ 6 ‖e−Λt‖‖p0‖+∥∥∥∥∫t
0
e−Λ(t−s) S(W(s) · p(s) + K(s)) ds

∥∥∥∥
6 emax(λ1, λ2)α‖p0‖+max(

S1m

λ1
,
S2m

λ2
)(emax(λ1, λ2)α − 1)

6 emax(λ1, λ2)α

(
‖p0‖+max(

S1m

λ1
,
S2m

λ2
)

)
,

where S1m and S2m are the maximum values of the sigmoid

functions S1 and S2.

As Faugeras and colleagues,75wecan extend this local result

from (−α, +α) to (−α, +∞), assuming that the hypotheses

on p0 in Theorem 8.1 are satisfied for t ∈ (−α, +∞). Indeed,

either +α = +∞ and the result is proved or there exists 0 <

β < α such that p is not bounded for all β 6 t < α, thereby

obtaining a contradiction.

We summarise these results in the following theorem:

theorem 8.2 If k1(t) is measurable on Ω × V and bounded

by k̄1 for all t ∈ (−α, +∞) the Cauchy problem (8.6–8.7) has a

unique bounded solution, hence in C1((−α, +∞),F2).

8.5 selection mechanism analysis

8.5.1 Local model with direction

To study the effect of the lateral inhibition on the input, we can

restrict our model to a single population model, not consider-

ing space, and with a constant input. Thus the input is given by

I(v) : V → R, and the model is defined as:

∂p

∂t
(t, v) = −

1

τ
p(t, v) + S

(∫
V

−kp(t,y) dy+ I(v)

)
, (8.8)

where S is a sigmoid and τ and k are positive constants.

lemma 8.4 If sup S′|V| |k| τ < 1, then the solution pe of the

model described in (8.8) is given by:

pe(v) = τS (I(v) − kτᾱ) .
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where ᾱ is constant across V.

Proof. At the equilibrium, we can set the left part of (8.8) to

zero. Then the steady-state pe is defined by:

1

τ
pe(v) = S

(∫
V

−kpe(y) dy+ I(v)

)
.

Switching from the activity p to the voltage u formulation,

by p = τS(u), the steady-state voltage ue is defined by:

u(v) =

∫
V

−kτS(ue(y)) dy+ I(v)

= −kτ

∫
V

S(ue(y)) dy+ I(v)

= −kτα+ I(v). (8.9)

where we α is defined as:

α =

∫
V

S(ue(y)) dy. (8.10)

Then, using (8.9), we have:∫
V

S(ue(v)) dv =

∫
V

S(−kτα+ I(v)) dv,

that is, with the definition (8.10):

α =

∫
V

S(−kτα+ I(v) dv. (8.11)

Denoting by F(I) the right hand side of (8.11), this function

is a contraction mapping if sup S′|V| |k| τ < 1. Then, under this

assumption and thanks to the fixed point theorem, there exists

a unique ᾱ verifying (8.11) that depends on model parameters

and I.

Switching back to an activity model we have:

pe(v) = τS(ue(v))

= τS (−kτᾱ+ I(v))

which concludes the proof in the activity domain.
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Fig. 8.2 Selection mechanism on
direction model. Dotted line represent
the initial input I(v). Solid line show
the equilibrium state in which multiple
velocities are still active.
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Contrarily to divisive inhibition implemented for instance

by Yuille and Grzywacz,262 our lateral inhibition is not suffi-

cient to implement a winner-take-all mechanism (see Fig. 8.2).

Indeed, the role of the lateral inhibition here is only to subtract

a constant value at each direction, since ᾱ does not depend on

v (Lemma 8.4).

Yet numerical results in our complete neural-field model

suggest a strong selection mechanism influenced by lateral in-

hibition.Wehypothesise that selection is thus the combination

of lateral inhibition and spatial integration. Indeed, in the next

section we add a 1d spatial domain to the model to obtain a

direction selection.

8.5.2 1d spatial model with direction

To account for the selection mechanism obtained in our com-

pletemodel,we add a 1d spatial dimension to theprevious purely

directional model. The 1d spatial model has its activity defined

by:

∂p

∂t
(t, x, v) = −

1

τ
p(t, x, v)+S

(
Gσ

x∗ p(t, x, v) −
∫
V

kp(t, x,y) dy+ I(x, v)

)
,

(8.12)
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where p : R+ ×Ω × V → R, andΩ is a 1d open bounded set

of R.
The two sets of connectivities defined in this model are

enough to reproduce various properties of the full neural field

model. At the same time the model is small enough to apply bi-

furcation analysis tools on it. The analysis was conducted using

a c++ implementation of the model and the Trilinos library.103
Fig. 8.3 Response of model
(6.1)–(6.2) on almost similar stimuli.
The output direction changes dramat-
ically by varying the input conditions.
The red line denotes the cut used as
input for the model presented here.

As an illustration,we studied themulti-stability phenomenon

described in Section6.2.3 and redrawn inFig. 8.3. Thuswedefined

an input constant in timemimicking the aperture problem found

in a 1d cut of the square gratings stimulus (red line in Fig. 8.4).

space

direction

Fig. 8.4 Input stimulus for the
direction+space model. It reproduces
the aperture problem in an horizontal
1d slice of the square barber pole.

We analysed the bifurcation by varying the steepness of the

sigmoid (see Fig. 8.5). For sigmoids steep enough we observe

several branches stable andunstable of solutions. The two solu-

tions shown in Fig. 8.3 are observed and correspond to the two

stable branches of the right figure (they are overlapping on the

left figure). In addition, an unstable solution consisting of an

average of the two stable solutions is found by the analysis.

Max. activity

Sigmoid steepness
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(a)

Sigmoid steepness

Direction
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Fig. 8.5 Bifurcation analysis on
the 1d spatial model with direction
(8.12). (a) The maximum activity is
shown with respect to the sigmoid
steepness. Since they have the same
maximum value, two stable solutions
are overlapping after the pitch fork.
(b) The average direction is shown
with respect to the sigmoid steepness.
Dotted lines denotes unstable solutions.
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Part 3 Performance analysis

9 Comparison to human performance 101

10 Comparison to computer vision 115

Generalising the evaluation of motion integration models dis-

cussed in the previous results, we advance a new evaluation

methodology ofmotion estimation approaches.Our benchmark

described in Chapter 9 is divided in two. A static evaluation

allows comparison of the final percept and can be applied to

existing computer vision approaches. A dynamical evaluation

considers the time evolution of the perception or of the eye po-

sition. We provide baseline results for state of of the art com-

puter vision and modelling approaches.

To conclude we investigate the performance of our neural

fieldmodel in a computer vision fashion. In Chapter 10we start

by inputting videos from classical and state of the art computer

vision benchmarks into our model in its neural field formula-

tion. The results demonstrate that the proposed approach can

successfully be applied to computer vision sequences and that

biological inspiration can be an effective source of innovation.
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Chapter 9 Comparison to human

performance

Evaluating models of motion integration is not easy and no evalu-

ation methodology currently exists. We propose to apply computer

vision ideas related to benchmarking as the basis of an evaluation

based on performance of the visual system (Section 9.1). We start by

describing the main difficulties of designing a benchmark in Sec-

tion 9.2. The stimuli database is made of stimuli used in behavi-

oural and perceptual experiments described in the previous chapters.

We specify it in Section 9.3. We illustrate the scoring procedure on

an example and show baseline results obtained on both biologic-

ally inspired artificial vision models and computer vision models in

Section 9.4. Section 9.5 concludes andmentions possible extensions

of this work.

main contributions

� An evaluation methodology for models of motion integra-

tion.

� Baseline results on classical and state of the art approaches

in computer vision and modelling.

9.1 introduction

Offeringproper evaluationmethodology is essential to continue

progress in modelling the neural mechanisms involved in vis-

ion information processing.

In this chapter we define a motion evaluation methodo-

logy where the visual system performance acts as ground truth.

Since models aim at elucidating both the computational prin-

ciples and the computing architectures involved inmotion pro-

cessing, comparing their outputs to biological responses is there-

fore a strong requirement. Such an evaluation methodology is
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very different fromclassical computer visionbenchmarkswhere

flow fields are compared together. In our context, the notion of

localmotion does notmake a lot of sense when considering the

visual system performance since the purpose of the visual sys-

tem is not to estimate a dense flow field. Thus defining global

readouts is necessary in order to compare output from mod-

els with observable quantities measured in neuroscience ex-

periments. Moreover behavioural and perceptual experiments

provide numerous types of data such as perceived motion dir-

ection and speed or smooth pursuit eye movements.► Stimuli, scoring procedure and baseline
results are available online at:
http://www-sop.inria.fr/
neuromathcomp/motionpsychobench 9.2 comparison difficulties

9.2.1 Stimulus parametrisation

Comparingmodels performance to biological data requires the

definitionof anhomogeneous stimuli set. For example the stim-

uli are characterised by their physical size, the distance to the

observer, and their visual field size. In a benchmark stimuli set

we need to ensure a constant mapping between the physical

and the numerical dimensions, otherwise incoherenceswill oc-

cur in the simulated results. Other physical quantities such as

duration and luminance also require precise mappings.

9.2.2 Discretisation

Stimuli discretisation implies the necessity to define properly a

scale factor for converting real-world values characteristics into

computer parameters. The main problem with discretisation

procedures is the aliasing problem. One has to make sure that

frequency of the input does not cross the Nyquist frequency.

The spatio-temporal discretisation maps the time and the

visual field as a successionof discrete images sampleduniformly.

Such a representation is geometrically different from the log-

polar retinotopic disposition of the visual cortex. Moreover the

precision of the input has to be sufficient to avoid aliasing prob-

lems with the stimuli sizes used by the experimentalists. The

finer the precision the larger the data and a good compromise

between those two quantities has to be chosen.

Luminance is usually encodedby an eight bits values at each
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pixel. Such a coarse quantisation is a severe restriction since

contrast has a profound impact of the temporal dynamics of

most visual percepts and is responsible formanydynamical non-

linearities.

9.2.3 Inhomogeneity of the motion representations

All motion models do not have the same motion representa-

tion.Their output canbedescribedby global velocity likelihoods,157

velocity distributions at every position,95,24 filter responses,1 time-

correlated spike trains,53 or 2d flow fields.17 A typical biological

model ofmotion integrationmight include v1 layers with filter-

like responses, mt layers corresponding to local pattern trans-

lational motions and mst layers giving indications of global ro-

tation or expansion motions. Because of the variety of motion

representations it is necessary to define common observable

quantitieswhich are comparable to experimentalmeasurements.

These commonobservable quantities are called readouts in both

simulations and experiments presented herein.

9.2.4 Lack of ground truth

In computer vision the ground truth is the true velocity field,

which is easily defined for synthetic videos, and which can also

be estimated for real scene videos. For example in a recent bench-

markBaker and colleagues15 proposed videos of real sceneswith

the true velocity field. Algorithms can be evaluated based on

local comparisons of the 2d flow fields against the estimated

flow resulting from different algorithms.

In psychophysical studies the notion of ground truth is less

obvious and it is impossible to define it in a strict sense. For ex-

ample, one has to handle the great variability between subjects

or between trials for a single subject. The concision of data re-

ported in the literature, often amean and a standard deviation,

does not allow the extraction of the statistical laws underlying

the data. Moreover many stimuli are bi-stable or multi-stable,

and an additional difficulty in defining a ground truth.

Among the set of experimental stimuli studied in neuros-

cience some provided results at different levels. For instance,

the coherence level necessary for perceiving global motion in a
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randomdot patterns has beenmeasured in human subjects but

also in single neurons in areas mt, mst, and lip. In the 2d mo-

tion integration example being considered here, a consistent

set of global direction estimates have been collected at these

different levels as well as for human perception, and monkey

and human smooth pursuit.152 When available these datasets

collected for different responseswith a single set ofmotion stim-

uli should be used to benchmark models.

Given the diversity of the neuroscience experiments, cap-

turing themain properties and results ofmotion estimation ap-

pears to be a complex task. For this reasonwe restrict our study

to a set of fundamental questions described in the following

section.

9.3 database design

In this chapter we focus on two fundamental aspects of mo-

tion integration. Namely, wewant to evaluatemodels perform-

ance with stimuli showing the respective influence between 1d

versus 2d cues, and the dynamics of motion integration. We

chose four stimuli fitting into two classes: line-drawings ob-

jects and gratings. For the purpose of our evaluation we selec-

ted stimuli for which smooth pursuit eye movements and mo-

tion perception data were available.

Fig. 9.1 Database design. The pro-
posed stimuli fit into two classes: line
drawings and gratings. (a) Translat-
ing bar. (b) Translating diamond. (c)
Grating size. (d) Barber pole.

(a)

CCW CW

(b) (c) (d)

In the translating bar experiment (Fig. 9.1 (a)) a bar is cut in

an increasing number of segments, thus increasing the number

of 2d cues.144 This stimulus is described in Section 1.2.2.

In the translating diamond experiment (Fig. 9.1 (b)) a dia-

mond is presented moving either vertically or horizontally and

with two possible orientations.154 This stimulus is described in

Section 2.2.2.
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In the grating size experiment (Fig. 9.1 (c)) a translating grat-

ing is viewed through different aperture sizes.20 This stimulus

is described in Section 2.3.

In the barber pole experiment (Fig. 9.1 (d)) a translating grat-

ing is viewed through a rectangular aperture.243 This stimulus

is described in Section 1.2.2.

9.4 results

9.4.1 Readouts definition

Common output is necessary in order to compare models to-

gether and abstract all implementation dependent issues com-

ing from the large variety of motion models. For example, if

eye-movement like output can be defined, then models can be

compared together in term of dynamics. As illustrated by this

example, our goal here is to propose output formats corres-

ponding to classical readouts as defined in psychophysics. Our

goal is to describe for each readout, what they are supposed to

measure, and how they are measured in psychophysics.

Since the notion of local measurement has no clear inter-

pretation in termofneural architecture or activity, the readouts

defined herein correspond to global motion estimations. For

example, it is known that the preferred motion of neurons in

both v1 and mt changes depending on the stimulus,175 or that

the perceivedmotion and the neural activity can differ.114 Con-

sidering not only the local estimates but also more distant fea-

tures makes an important difference with classical computer

vision methodology for optical flow where only precision of

local estimates matters.

Our goal is to define qualitatively which common outputs

are needed frommodels (i.e. readout inspired from real neuros-

cience experiments). However no general formula for readouts

can be given for three main reasons. The first reason is that the

cortical mechanisms leading to a readout from neural activ-

ity are usually not clearly established and a fortiori it is hard

to model them rigorously. The second reason is that the vari-

ety of motion representations in models makes it impossible

to write a general formula that would be valid for any kind of
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representation. The last reason is that readouts defined here

are sometimes inherent tomodels. Indeed somemodels already

provide an eye-movement output157 whereas others considers

neural activity in cortical areas.23

In this chapter two kinds of evaluation are considered: The

static evaluation considers only the result at convergencewhereas

the dynamic evaluation focuses on the dynamics of motion in-

tegration.

� For the dynamic evaluation, the readout is expressed as a time in-

dependent value, such as a perceivedmotion direction. Given a

stimulus, some experiments require subjects to give their per-

ception concerning the motion they perceive. In general, this

perceivedmotion readout ignores time evolution. From amod-

elling point of view, the perceivedmotion readout canbe a global

velocity corresponding to the steady state. For the 2d motion

integration tasks, we can assume that perceived motion cor-

responds to the final output from eye movement readout.

� For the static evaluation, the readout is expressed as a time de-

pendant value, such as smooth pursuit eye movements. Volun-

tary eye movement to track motion are directly related to our

interpretation of the scene in term of motion content. Prim-

ates use two types of voluntary eye movement to track objects

of interest: smooth pursuit and saccades. Pursuit eye move-

ments are driven by visual motion and rely on both low-level

and high-level motion processing. Pursuit initiation is critic-

ally dependent upon visual motion processing in cortical areas

mt and mst(see Chapter 2. It presents the interest of being a

simple motor responses that requires an accurate estimate of

the global direction and speedof a single object, despite its prop-

erties such as shape or colour. It is therefore a good probe of ob-

ject motion processing and in particular it reflects many of the

dynamical properties of low level motion computation. From

a modelling point of view, smooth pursuit eye movement is a

single time-dependent vector, andwe only consider the eye dir-

ection since speed is generally ignored in experiments.
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9.4.2 Scoring procedure

The full scoring procedure for each class of stimuli is available

online. For each stimulus, instructions are detailed (see for ex-

ample Fig. 9.2 for translating diamonds stimuli and Fig. 9.3 for

the grating sizes). In order to show the general idea, let us ex-

plain what is the scoring procedure for static evaluation of the

translating diamonds stimuli. Our reference paper for this case

is the one ofMasson and Stone154 as it presents ocular following

measurements that we can use in our evaluation.

For a given an approach, our evaluation procedure starts

from the estimated global motion direction at every frame and

for each of the stimuli in this class, i.e. for translating diamonds

translating in one out of the four possible directions (right, up,

left, down) and oriented either clockwise (cw) or counter clock-

wise (ccw) . Let us denote by eS(t) the estimated global direc-

tion dynamics for a stimulus S, with t ∈ [0, 450ms] and S ∈
{right,up,left,down}×{cw,ccw}. Fromthis global estimateddir-

ection, the instantaneous direction error εS(t) is defined by

εS(t) = eS(t) − êS(t),

where êS(t) is the true object motion. Some results are shown

in Fig. 9.4 and Fig. 9.5 for the biologically inspired artificial vis-

ion model proposed in Chapter 6. Here the estimated global

motion direction was obtained from the mt layer activity.
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Fig. 9.2 Slides describing the static
and dynamics scoring procedure for the
translating diamonds (available on the
website).
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Fig. 9.3 Slides describing the
dynamics scoring procedure for the
grating sizes (available on the website).
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Fig. 9.4 (a) Direction error for
rightward moving diamonds estimated
by the model of Chapter 10. (b) Oculo-
motor dynamics recorded by Masson
and Stone.154

Results 109



Time [ms]

A
ve

ra
ge

 d
ir

. e
rr

. [
°]

100 200 300 400 500

0

20

40

Average

Fit

Truth

Fig. 9.5 Average directional error
for all moving direction and its fit to
the associated function compared to
the observed fitted function.

Our goal is to compare this estimated direction error εS(t)

to thedirection error observedwithhuman subjects (see Fig. 9.4 (b)

fromMasson and Stone154).We followed the same procedure as

the one defined by the authors. Estimated direction error is fit-

ted with the function:

fα,β,τ(t) = αexp (−t/τ) + β,

where α, β, and τ are the fitting parameters to be adjusted.

These parameters can then be compared to what is obtained

with human observers. The original authors estimated the av-

erage values and standard deviations for these parameters – de-

noted respectively byµ(η̂) andσ(η̂) for a parameterη ∈ {α,β, τ}).

Assuming a Gaussian distribution for parameters coming from

human subjects and given a stimulus S, we defined a score s ∈
[0, 1] for each parameter by:

sη = exp(−(η− µ(η̂))2/σ(η̂)2), with η ∈ {α,β, τ}.

Finally, a global score can be obtained by averaging scores

over all stimuli and parameters.

9.4.3 Baseline results

Weapplied our evaluationmethodology to both biologically in-

spired artificial visionmodels23,227 and computer visionmodels111,146,220,45

by running either the original implementation from the au-

thors or the code that was available in the Opencv library.42 A

single set of parameters were experimentally tuned in order to

achieve the overall best score across all experiments. As defined

in Section 9.4.1, we discuss below the results obtained in the

static and dynamic evaluations. For each scenario, results are

presented into tables by scores between zero (low performance)

and one (high performance. Algorithms are ranked according

to their average score across all experiments. Complete details

for each stimuli and evaluation procedure can be found on the

associated website.
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Static evaluation

Results are presented in Table 9.1. As a general comment, it is

interesting to remark that models performance somewhat fol-

lows research evolution. For example the classical approaches

for optical flow proposed by Horn and Schunck111 or Lucas and

Kanade146 show quite a poor performance on most stimuli (see

Fig. 9.6).

(a) (b) (c) (d)

Fig. 9.6 (a) and (b) Output flow
from Horn and Schunck111 for two
different frames. (c) and (d) Same out-
put frames from the model described in
Chapter 10.

The fact that these approaches are differential andnotmulti-

scale largely explains this performance. Being differential, the

optical flow is estimated based on the brightness consistency

assumption, which is a local indication. Thus when there is a

majority of 1d cues, with hardly no texture, the input to differ-

ential algorithms is not very informative and leads to an aper-

ture problem that is hard to solve numerically.

Approach Avg.
CCW CW

tmk·10 1.00 1.00 1.00 1.00 1.00
srdb·10220 0.86 1.00 1.00 0.65 0.78

bm·1045 0.74 1.00 1.00 0.00 0.98
bn·0424 0.68 1.00 1.00 0.36 0.38
lk·81146 0.45 0.81 0.00 0.99 0.00
hs·81111 0.39 0.52 0.00 1.00 0.03

bmocv 42 0.19 0.00 0.32 0.44 0.00

Table 9.1 Static evaluation results.
For each approach and each experi-
ment a score between 0 (worse) and 1
(best) is given depending on the final
motion direction error. bmocv denotes
the block matching algorithm found in
the Opencv library, and tmk·10 is the
model of Chapter 10.

Considering multi-scale approaches is today one classical

method to solve the aperture problem more efficiently. This

solution is now used by most current models, such as Sun and

colleagues220, or Brox and Malik,45 which are now among the

best computer vision models (see the latest results online from
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Baker and colleagues 15). Interestingly, those models also per-

form well for most of our experiments.

Biologically inspired artificial visionmodels (Bayerl andNeumann24

or model of Chapter 10) show high performance. In particular

themodel proposed in Chapter 10 obtains themaximum score.

The major strength of this model is that its design is naturally

multi-scale as it is inspired from the multi-layer architecture

of the brain cortical areas (v1 and mt) with proper connectivity

patterns. This is one important result of this evaluation meth-

odology because it allows to show that taking biology into ac-

count can lead to extra performance.

Dynamic evaluation

Results are presented inTable 9.2. Studying thedynamical prop-

erties of motion integration is quite a new topic and very few

biological data (psychophysical, oculo-motor, or neural dynam-

ics) were available when most models were proposed. For this

reason, most models were often static, i.e. they were interested

in estimating the final percept or optical flow, ignoring how the

solution evolves in time to the final percept.

Table 9.2 Dynamic evaluation
results. For each approach and each
experiment a score between 0 (worse)
and 1 (best) is given depending on the
fitting procedure described in the main
text.

Approach Avg.
CCW CW

tmk·10 0.68 1.00 0.96 0.08
lk·81146 0.37 0.75 0.36 0.00

srdb·10220 0.37 0.75 0.36 0.00
bm·1045 0.35 0.50 0.36 0.18
bn·0424 0.32 0.50 0.39 0.07

bmovc 42 0.31 0.50 0.36 0.05
hs·81111 0.26 0.75 0.03 0.00

Studying thedynamics hasmainly been considered inChapter 6.

Thismodel shows the best performance on translating bars and

diamonds, considering the recentneuronal, psychophysical, and

behavioural findings.171,172,154,241 For all othermodels, since there

is no true dynamics, scores are not very informative. Yet, dy-

namics remain anopen issue in themodelling community.None

ofmodels tested here performed correctly on the gratings stim-

ulus, suggesting that the underlying mechanisms remain to be
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found.

9.5 discussion

In this chapter we set the basis for a new evaluation method-

ology for motion models which is based on human perform-

ance. This work generalises in a rigorous way the evaluation

procedures done for most motion models proposed in compu-

tational neuroscience. By carefully defining a unified database

and proper scoring procedures, it is now possible to perform

non-biased comparisons betweenmodels, since stimuli are not

optimised for a given approach. Our database is freely available

on the web together with scoring instructions and results. We

provided baseline results for both biologically inspired artifi-

cial visionmodels and state-of-the-art computer visionmodels.

Our results also contribute to showwhat is the interest to con-

sider biologically inspired models in the computer vision com-

munity. By considering stimuli from the psychophysics com-

munity, one can further challenge motion models, in addition

to existing optical benchmarks.

The proposed evaluationmethodology can of course be ex-

tended. In this study several properties affecting the motion

integration mechanisms were ignored. For instance, disparity

used in binocular experiments is missing, and thus it could be

probably possible to evaluate other kinds of models where mo-

tion and depth are combined.25,252,200,219 Another property ig-

nored herein is the contrast. In a wide range of psychophysical

and neurobiological stimuli, contrast has a considerable effect

on motion integration. For instance the receptive field size in

areas v1 and mt changes with contrast.201,175 Contrast also in-

fluences behavioural results.154,241,35 Those kinds of stimuli vari-

ations should also be considered in amore comprehensive data

set. One could also think about other stimuli. For instance, it is

well known thatmost of themotion stimuli aremulti-stable. In

the case of drifting plaids one can perceive either two gratings

with different velocities, or one single plaid motion.117 Incor-

porating this multi-stability in models is still only at the sketch

level in models,89,238,227 and mostly ignored in motion bench-

marks.
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The general idea of benchmarking has been very well un-

derstood and applied in computer visionwhere challenging bench-

marks are nowavailable for several key problems allowingmod-

els to be compared and further improved. For example, motion

estimation performance in computer vision increased signific-

antly thanks to several classical benchmarks, which pointed out

strength and weaknesses of state of the art approaches.17,15

For instance the benchmark for optical flow introduced by

Baker and colleagues15 defines a set of challenging image se-

quences with associated ground truth. The choice of sequences

was guided by theneeds to evaluatemodels performance onkey

difficulties encounteredbymodellers (motion at objects bound-

aries, occlusions, non-rigid motions, large displacements). The

proposed evaluation methodology consisted of several quanti-

fied criteria based on local comparisons between ground truth

and output from computer vision models.

In the next chapter we investigate how our model behaves

on natural scenes used in computer vision, even if it was not

proposed in this scope.
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Chapter 10 Comparison to computer

vision

Following the approaches of Castellanos Sánchez et al.49 and Bay-

erl and Neumann,24 we investigate the suitability of a biological

model to analyse realistic videos from classical and recent computer

vision benchmarks. Section 10.1 discuss the links between our neural

fields model and computer vision approaches. In Section 10.2 we

describe the input motion estimation fitted to computer vision re-

quirements in. In particular we consider the effect of temporal and

spatial borders. In Section 10.3 we consider two ways of improving

the precision of the estimated flow: lateral diffusion and subpixel

velocity spaces.

main contribution

� A biologically inspired algorithm for motion estimation.

10.1 relations to computer vision

One essential aspect of the neural fields framework lies in the

definition of interaction between populations through an in-

tegral form. Interestingly, under some assumptions, one can

write relations between integral operators (acting in a neigh-

bourhood) and differential operators (acting very locally). This

question was investigated by several authors67,70,62 and further

extended by Viéville and colleagues.239 In these papers, the au-

thors show the correspondence between linear elliptic differen-

tial operators and their integral approximation. This idea has

also been considered for nonlinear operators by Buades and

colleagues46 or Aubert and Kornprobst.13. Thus, one can see a

direct relation between the neural fields framework and pde-

based approaches.

As such, introducing the neural fields framework for mo-

tion estimation can be related to the series of papers proposing
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pde-based approaches for optical flowestimation, starting from

thework ofHorn and Schunck.111 In computer vision, this sem-

inalworkhas been further improvedbymany authors.71,33,247,166

Improvements concern mainly the definition of the regular-

isation term, which is how diffusion performs. In this class of

approaches, since diffusion is defined by differential operators,

the aperture problem is solved by local diffusion processes.

Here, using the neural fields framework, we offer the pos-

sibility to define different kinds of connectivity patterns not ne-

cessarily corresponding to differential operators. More gener-

ally, for modelling in computer vision, the neural fields form-

alism has two main advantages over pde-based approaches: (i)

Thefirst advantage is that non-local interactions canbedefined,

which is not possiblewith classical pdeor variational approaches

defining the interactions between neighbours through differ-

ential operators. (ii) The second advantage is to naturally de-

scribe interactions between severalmaps. In our article, the two

maps correspond to two scales of analysis, thus providing a dy-

namicalmultiscale analysis.

10.2 local motion estimation

10.2.1 Frames correlation

In this chapter, as an alternative to the motion filters described

in Section 5.3.1, we use correlation between two frames as in-

put to our model. This choice makes more sense in a computer

vision approach since it is a simpler mechanism—two frames

are compared—often used in computer vision algorithms. In-

deed the filtering approach described in Section 5.3.1 does not

consider the initial and final frames due to its large temporal

support. Moreover this change proves that our model is relat-

ively independent of its input. We use the correlation motion

detector described in Section 4.3.1 and proposed by Bayerl and

Neumann24 but enhanced to support subpixel velocities estim-

ates.
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10.2.2 Flow inpainting

In order to avoid high errors at the borders in the input, since its

computed from displaced frames, we set them to a small value

for all the velocities—0.02 in this case. Displaying the optical

flow for p1 and p2, we can see that those regions get filled when

a velocity dominates close to the borders. For instance in the

Hamburg taxi sequence (see Fig. 10.1), we observe a filling-in of

the borders in regions close to the cars.

(a) (b) (c)

Fig. 10.1 Filling-in the borders.
(b) Input Hamburg taxi sequence.
(b) Optical flow in p1. (c) Optical flow
in p2.

10.3 optical flow precision

10.3.1 Lateral diffusion

One canwonder if themodel defined by (8.2)–(8.3) in Chapter 8

is usable in robotics applications. The precision of the optical

flow is particularly important in this case and benchmarking

databases were designed to compare the algorithms described

in computer vision.15

Fig. 10.2 Synthetic Yosemite se-
quence. This video is classically used to
evaluate optical flow approaches. Since
it is computer generated, its ground
truth is available.

The classical synthetic Yosemite sequence (see Fig. 10.2) provides

a good example of a dense velocity field, where a motion is as-

sociated to each position.17 When given as input to the neural

fields model with no lateral diffusion—λd1,2 = 0—the output of

theupper layerp2 ismadeof patches, as described inFig. 10.3 (a).

A similar effect appears with any of the othermodels since they

do not incorporate lateral diffusion.

To compare the output of the model to the ground truth,

we compute the angular error of the optical flowm2 (see Sec-

tion 5.3.2) by:
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Fig. 10.3 Model output on the
Yosemite sequence. (a) Optical flow
from p2. The optical flow is made of
patches inside which a single velocity
dominates. (b) Angular error of the
optical flow. The borders between
patches have a lower error (darker) than
the inside of the patches since multiple
velocities coexist.

(a) (b)

arcccos

(
u1v1 + u2v2 + 1√

u2
1 + u2

2 + 1
√
v21 + v22 + 1

)
where u = (u1,u2) is the correct velocity and v = (v1, v2) is

the estimated velocity.

It is due to the selection mechanism, implemented in the

model by lateral inhibition, that patches appear in the output.

Indeed, a single velocity is preferred at a single position and be-

cause of the lateral interactions, a single velocity is preferred in

a local neighbourhood. Noticeably, multiple velocities appear

at the intersection of patches and lead to an average velocity

closer to the ground truth. This averaging can be seen by the

lower error made at the patches intersections in Fig. 10.3 (b).

In order to smooth the velocity field, we investigated the

addition of a smoothing mechanism implemented as a short

range lateral diffusion, as defined in the previous chapter. By

increasing the values of λ1 and λ2 to 6 and 8, we smooth the

output and decrease the average angular error to 6.48°.

10.3.2 Subpixel velocities

Plotting the norm of the ground truth and the spatial distribu-

tion of the angular error, one can remark that the highest er-

rors are spatially localised in the subpixel velocities region (see

Fig. 10.4).

Indeed, due to the selection mechanism Thus, instead of

using integer values for the coordinates in the velocity space

V, we can sample it by V = {−5,−4.5, ..., 4.5, 5}2. As shown

in Fig. 10.5, this choice decreases the error inside the subpixel
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(a) (b)

Fig. 10.4 Effect of a coarse velocity
space. (a) Norm of the ground truth.
(b) Angular error localisation.

velocities regions, and lower the average angular error to 3.97°,

a value inside the range of baseline results in computer vision.15

(a) (b)

Fig. 10.5 Effect of a subpixel velo-
city space. (a) Optical flow output from
the model (b) Angular error localisa-
tion.

10.3.3 Dynamics

In Fig. 10.6 we show the evolution of the average angular er-

ror (aae) for each frame of the Yosemite sequence. We observe

that the convergence is not reached between the first pair of

frames (as in classical computer visionmethods) simply because

we limited the number of iterations between two frames. In-

deed, we designed our model to reproduce motion integration

dynamics and this exponential decay of the error is very im-

portant in psychophysics.

10.3.4 Other results

Results for the rubber–whale sequence15 are shown in Fig. 10.7.

In this sequenceweobtain an average angular error of 10.40°(me-

dian 4.00°). The high- est errors appear at occlusions, in partic-

ular inside the hole of the e-shaped object (see red arrow)where

a maximal error of 105°is reached.
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Fig. 10.6 Dynamical evolution of
the average angular error (aae) on the
Yosemite sequence. 0 2 4 6 8 10 120510152025303540

Time [frame]

A
A

E
 [
°]

Fig. 10.7 Rubber whale sequence.
(a) Activity response in our p2 area. (b)
Angular error in p2 (average is 10.40°).

(a) (b)
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In the context of the European project searise, described

in Chapter a, we tested ourmodel on different sequences taken

from video-surveillance cameras. Results are show in Fig. 10.8

for the stadium configuration and in Fig. 10.9 for the Duisburg

entrance configuration and the parking configuration.

(a)

(b)

Fig. 10.8 Results on the searise
video-surveillance videos inside a
stadium.

Yet applyingourneuralmodel on such large video sequences

(1616×1228pixels for the stadium)with large velocity spaces (|V| =

441) has a high memory (several gigabytes per iteration) and
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computational (several minutes per frame) cost. Reducing the

velocity space, as done byBayerl andNeumannwith theCensus

transform,23 or using a log-polar configuration, is one of the

possible options to handle high velocities without dramatic-

ally increasing the memory usage. Due to the highly parallel

nature of the model where all operations are local, the usage of

massively parallel processors (gpu, fpga, memristors) is a solu-

tion to decrease the computational cost.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10.9 Results on the searise
video-surveillance videos at an en-
trance (first two rows) and on a parking
(last two rows).
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Conclusion

models of motion integration

Perception

We designed and implemented models of motion integration

able to reproduce behavioral performance on a wide range of

moving stimuli. The tested set of stimuli included various con-

figurations of line drawings, rotating ellipses and drifting grat-

ings. To account for these experiments we designed models of

cortical areas implementing small sets of computational mech-

anisms, without requiring specific motion or junction detect-

ors. Compared to some previous models of motion perception

our approach considers the neural implementation of the pro-

posed mechanisms in v1 and mt.* Also, our approach explains * For example, descriptive models such
as Bayesian models, generally focus on
reproducing the observed
percepts,249,157 whereas we aim at
explaining the underlying neuronal
interactions.

a wider range of motion percept.†

†Mechanistic models are based on
neuronal interactions but are often
more restricted in the stimuli they
explain, for instance they do not
consider contextual influences208 or
non-binary gratings.24

future work

� Most experimental stimuli aremulti-stable (see Section 1.4.1).

an extension of our models should be able to account for

change in perception over long durations (>1s). One pos-

sibility to achieve changes in time is to include adapta-

tion. Such an adaptation can be implemented with second

slower variable which inhibits the activity in order to select

the second most active velocity. We expect an oscillatory

solution to be found in this case.

Yet othermechanisms such as stochasticity can explain

changes of perception, and they those possibilities would

have to be compared to experimental data.

� For simplicity and interchangeability, we designed models

were v1 cells are speed- and direction-tuned. Yet the re-

ceptive fields of v1 cells can be considered as blobs in the

frequency space148 Finer details in the representation of

motion in v1, for instance by implementing a feedback dir-
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ectly of the filter cells, would be helpful to study the effect

of changes in receptive fields (see Section 3.2.5).

We could implement a model where the feedback dir-

ectly influences the cells corresponding to the filter blobs,

without passing through our v1 cells. In doing so we ex-

pect the response of filters to evolve over time, allowing

comparisons with experiments on tuning changes.141

Dynamics

The proposed dynamical model is able to account for motion

integration dynamics, and we linked it to perception dynam-

ics and smooth pursuit eye movements. Our model is able to

reproduce the directional dynamics on various configuration

of translating bars and we made some predictions concerning

gratings and line drawings which are yet to be validated.

Compared topreviousmodels our approachproposed anovel

modelling link between neural interactions in v1 and mt and

integration dynamics. Previous similar models focused on mo-

tionperception (except themodel of Pack,Grossberg andMingolla173

which focus on the maintenance of smooth pursuit). Yet per-

ception and dynamics are two intertwined aspects of motion

integration, and we are convinced that modelling of both be-

havioural and perceptual experiments would be fruitful.

future work

� Predictions of the model concerning dynamics remain to

be tested by psychophysics. For instance the dynamical

shift from the vector average to the intersection of con-

straints shown in Fig. 6.6 (a) is well known in the literature.

Yet, in our experiment, it appears to be following one velo-

city line. Comparing smooth pursuit or precise perception

dynamics on this example might validate this model beha-

viour.

� To analyse the effect of the contrast we varied the amp-

litude of themotion input, or added noise. Yet a real mech-

anism to account for contrast remain to be added in the
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model, and in particular in the motion detectors which are

still contrast invariant. A solution would be to use the mo-

tion detector used by Weiss, Simoncelli and Adelson.251

� Motion anticipation described in Section 6.2.1 is currently

being experimentally tested in macaques. In our model an-

ticipation is still spatially limited by the purely multiplicat-

ive feedback. A subthreshold preparation feedback might

help the anticipation of motion over larger spatial domain.

Together with contrast handling in the model, anticipation

might produce faster adaptation for higher contrasts.With

the addition of different delays (see neural fields section

below), we would be able to verify if anticipation comes

from lateral of feedback interactions.

� Most comparison where made with the dynamics of direc-

tion error, since it is the data most often found in the liter-

ature. Yet our model is able to output speed dynamics, the

magnitude of the motion, as another kind of prediction.

We expect future smooth pursuit recordings to providemore

speed data and thus further validate the proposed model.

Contextual influences

We proposed a novel form-motion interaction to account for

motion segmentation.We suggest that luminance information,

from cortical area v2, gates motion integration in v1–mt. Such

a simple model explain the motion perception in stimuli with

different moving objects such as the simulated edge of Huang,

Albright and Stoner113 or the chopstick illusions.

Compared topreviousmodels our approachproposes anovel

mechanism for motion integration. It also proposes an altern-

ative to more complex junction detectors and depth layers23,32

in some stimuli. Yet depth ordering is not considered in our

model.

future work

� We proposed that luminance information gates motion in-

tegration, but the mechanisms underlying such a contex-
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tual modulation remains to be found. One possible explan-

ation for the binding of cross-modality informations—lu-

minance and motion here—is spike correlation.

Several spikingmodels have been proposed to segment

motion or luminance, as well as implement cross-modal in-

teractions through synchronisation.53,54,265,261 If such a syn-

chronisation is observed in the visual cortex, it might serve

as a binding mechanism between cortical areas.

� More generally, finding a mediator of cross-modality in-

teractions might help incorporate other features (for in-

stance texture) to help motion integration. In addition to

synchronisation, one other possibility for binding is multi-

plexing—cells tuned for several features. For instanceDeAn-

gelis and Newsome65 found disparity columns in cortical

area mt, for patches of neurons also selective to specific

motion direction. Mante and Carandini148 propose thaht

certain cells of v1 exhibit a tuning combining orientation

and motion direction, based on physiological recordings.21

� We proposed the luminance-gating mechanism as a form

cue to segregate between objects. Other models often use

depth ordering to support formultiplemotions.32,23 Yet these

approaches are limited to the number of layers implemen-

ted in the model. To account for arbitrary multiple mo-

tions—also named transparentmotion—we suggest two al-

ternatives.

The first is to localise the inhibition in the velocity space.

Currently the selection mechanism is inhibiting equally all

the velocities at a given position. By sharpening its con-

nectivity to a Gaussian function we can allow several solu-

tion to coexist.

The second is to consider a synchronisationmodel either

as a full spikingmodels as discussed previously, or by adding

a phase domain. Then different motion can coexists at a

given position, if the connectivity is set accordingly.55
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Neural fields

We investigated the mechanisms involved in our model both

analytically and numerically. To facilitate the analysis as well as

the linking to other models, we rewrote our model with neural

fields equations. Such a common framework allows to compare

the mechanisms in our model to others and unravel the neural

computations carried across the cortex.Wealsonumerically in-

vestigated the role of lateral inhibition and searched for bifurc-

ations in a simplified version of the model.

Almost none of the previousmodels use neural fields equa-

tions for motion analysis. One notable exception is Giese89. In-

deed studies of neural fields equations aremainly theoretical254,7,76

or focusing on saccades,222 attention,83 or orientation in v1.237

future work

� Following neural field research238, further bifurcation ana-

lysis could be applied to models and explain various multi-

stable percepts. In particular our model is able to give mul-

tiple solutions, with small changes to the initial conditions,

on the multi-stable stimuli presented in Section 1.4.1.

Because of the numerous equations to be solved in

our model, in particular due to the spatial and velocity dis-

cretisation, applying continuation tools directly of the full

model is extremely computationally demanding. We sug-

gest two non-exclusive alternatives. First, the model can

be approximated by Pincherle-Goursat kernels,234 as sug-

gested by Veltz and Faugeras.238 Second, we can simplify

the model to keep only selection and spatial diffusion in a

1d spatial domain and 1d directional domain, as we did in

Section 8.5.2.

� The luminance diffusion mechanism remains to be incor-

porated into the neural fields formalism. We already show

how to include Laplacian operators andmultiplicative feed-

back into neural fields.

� Adding delays76 in the equation should constrain the con-

nectivity of the model. First, although distant connections

are low, the model is currently not causal, as are almost
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all models in the literature. Then, Deco and colleagues66

showed that delays are useful to model forward/backward

interactions. As described above, delays taken from the

physiological literature can constrain models enough to be

able to differentiate between lateral and feedback mech-

anisms, for instance in motion anticipation. Physiologically

this work has been started by Angelucci and Bullier8 who

shown that long-range lateral connections in v1 are too

slow to explain the orientation-selective surround field. Fi-

nally, delays can model the speed difference between the

parvo- and magno-cellular pathways.

performance analysis

Comparison to human performance

We proposed a motion estimation evaluation methodology for

motion integration approaches. Our goal was to evaluate the

results of a given model by scoring how much it fit to the ex-

perimental data. In this view,we establishedmappings between

experimental time or space configuration and benchmark se-

quences to maintain the relations across stimuli. Our bench-

mark is divided in two evaluations: The static evaluation,which

allows comparison with computer vision approaches; The dy-

namical evaluation to comparewithmotion integrationdynam-

ics such as smooth pursuit.

future work

� The set of stimuli is still relatively small and should be ex-

tended. Random dot kinematograms are still to be incor-

porated as a third class of stimuli. Contextual influences

such as the various barber poles and chopsticks stimuli are

also missing.

� Luminance—and thus contrast—is not yet considered by

the database, although being a strong contextual modu-

lator of motion integration. Its discretisation will require

the usage of another file format since computer images are

often limited to 8 bits.
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� Our perceptual performance is based on motion direction

only. Yet several other measurements are used in psycho-

physics, including coherentmotion, discrimination, and forced

choice.

Comparison to computer vision

We compared the results of our model to computer vision ap-

proaches of motion estimation. A set of video sequences from

the computer vision show that our model is able to give good

results even for large input and complex stimuli. Several char-

acteristics allow a v1–mt model of motion perception to per-

form well for computer vision. First, the hierarchical architec-

ture of the visual system enables large scale diffusion. Second,

the model is able to fill-in regions with invalid input, such as

borders. Finally, our dynamical model remembers the past, and

does not process the input frame by frame.

Previous biologically inspired algorithmshave beenproposed

to handle computer vision problems. For most of them, bio-

logy is a source of inspiration and they do not consider motion

percepts.49 The model of Bayerl and Neumann24 is a success-

ful model bridging the gap between modelling and computer

vision and served as inspiration to our work.

future work

� Large velocities remain a problem in the current imple-

mentation due to peculiar nature of our distributed repres-

entation. A sparse or log-polar motion tuning will certainly

improve the computational cost and the results, without

having to change themodel. An improved connectivity and

readout mechanism might then compensate the lack of

precision in the velocity field by interpolating the popula-

tion response in mt. Such as mechanism will also increase

the biological plausibility since target speed can be obtained

by taking a weighted average of the population, and not of

single cells.59,189

� In terms of validation, a careful evaluation of optical flow
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performance remains to be done. In particular recent com-

puter vision benchmarks15 could be used to fully quantify

the results of our models.
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Appendix a European project searise

This phd thesis was partially funded by the European project sear-

ise.

The searise project developed a trinocular active cognitive visual

system, Smart-Eyes, for detection, tracking and categorisation of

salient events and behaviours. The system has capability to learn

from and self-adjust to the ever changing visual input; fixate at sa-

lient events and follow their motion; performs visual categorisation

of salient events based on environmental context and a set of policy

rules. The “heart” of the visual system is made of two active stereo

cameras, the binocular cameras, which automatically fixate at the

salient object, follow its motion, and then switch the attention to

another salient location. The system performs multi-scale analysis

by zooming individual parts of attended events, which might either

uncover object's identity or display its salient actions in details. The

“brain” of the visual system is a cognitive model of visual processing

replicating computational strategies supported by neurophysiolo-

gical studies of the mammalian visual cortex. The Smart-Eyes sys-

tem combines an engineering paradigm for coordinated eye-like

movements of the binocular cameras with an innovative computa-

tional theory of visual cortex. The system responds to events hap-

pening in its field of view by continuously switching its attention to

those objects or object parts exhibiting most salient actions.

a.1 main contribution

The motion models described in thesis provided the substrate

for a strong scientific collaboration with Heiko Neumann and

Jan D. Bouecke from the Ulm University. They allowed a com-

monmotion processing model to be implemented in the sear-

ise system,with better parameters set up, and faster implement-

ation.

The collaboration has been extended to the development

of the evaluation methodology for motion estimation models

based on human performance presented in Chapter 9.
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a.2 other contributions

a.2.1 Hardware implementation

Back at the beginning of theEuropeanproject, the searise team

was supposed to work on conventional cpu hardware. Thanks

to the previous knowledge developed by partners in the former

Odyssée team (nowNeuromathcomp), wewere able to propose

several alternative technologies which eventually appeared to

be far superior. Indeed themembers of theOdyssée team, had a

strong experience on advance high performance computation.

The personswhichwere involved at the time includeHora-

cio Rostro-González for fpga, and Émilien Tlapale and Jérôme

Piovano for gpgpu. Note that the gpgpu technology pushed on

the scene by the inria appears to be the dominant technology

in all computationally expensive algorithms in the scientificfields.

Thus, our experience has been able to be disseminated into

the other teams of the searise project, and is now used intens-

ively by, for instance,HeikoNeumann and Silvio Sabatini's pro-

ject.

Moreover our previous experiencehas allowed todebugprob-

lems appeared long after the beginning, that were intricate to

the gpgpu.

A second benefit of proposing this alternative has been to

be able to upgrade, by a graphic card upgrade, the expensive

system initially bought by searise, without having to replace

the full system.

a.2.2 Engineering collaboration

We proposed and defined a common format for storing input

and results of simulations, allowing modules to be independ-

ently tested by the team members. This proposal involved the

hdf5 format, in which we already had a lot of experience with,

which is becoming a de facto standard for scientific format in-

terchange. Common formats allows to test different modules,

both developed by the project, but may also be used by other

external teams.
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a.2.3 Core software

Among the various areaswherewe led thewaywas the gpuData

library. Basedonour previous experience in the teamwithCImg,

SciPy, and several other multi-dimensional scientific libraries

development, as well as our gpgpu experience, we were able to

propose a high-performance gpgpu library for cuda, probably

the first existing at that time. Eventually most of the code pro-

duced by the searise project is built on top of our initial con-

tribution.
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Appendix b Aiding low vision patients

In this appendix we propose a reading aid software for low vision

patients. This work started as a postgraduate fellowship in a collab-

oration with Éric Castet and Jean-Baptiste Bernard from the cnrs.

It was extended during the phd thesis, although not being our main

objective. Section b.1 introduces the problem of low vision in and

its consequence to reading. In Section b.2 we describe the existing

reading aid as well as their capabilities. In Section b.3 we propose

a reading aid software,Navisio, and describe its functionalities for

complex documents reading. Helped by orthoptists at the hospital

La Timone in Marseille, we conducted a comparison experiment

on 26 low vision patients and present the results in Section b.4. We

conclude in Section b.5, suggesting future extensions of our reading

aid.

main contributions

� A reading aid software for low-vision patients

� Experimental validation with patients and experts

b.1 low vision

Low vision is defined as a permanent form of visual impair-

ment which cannot be correctedwith an optical correction and

which leads to the inability to read the newspaper from a con-

ventional viewing distance of 40 cm.

Leading causes of low vision are age-related eye diseases

like macular degeneration (≥ 50%), glaucoma, diabetic retino-

pathy and cataract. They cause a decrease of the visual acuity

and dramatically affect everyday life. Most of these diseases in-

duce central field loss: Patients are blind in their central visual

field (this is defined as a scotoma) as they cannot use the fovea,

the highest resolution part of the retina to explore visual scenes

(see Fig. b.1).
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Fig. b.1 Qualitative representation
of the perceived image by a patient in
front of a zoomed text displayed on a
computer screen. (a) Image of a text
displayed on a standard video monitor,
with (b) the simulated acuity depending
on the gaze and eccentricity and (c)
with a black area corresponding to
an absolute scotoma area. The legible
letters correspond to the average visual
span.192 (a) (b) (c)

In 2004, theWorldHealthOrganization estimated that 124

millions people suffered from low vision in theworld, using the

visual acuity (ability to recognise small letters) to characterise

the low vision impairment (see Table b.1).

In most cases, medical treatments can slow down the de-

velopment of the pathology to blindness. Unfortunately, there

is no treatment to recover the damaged part of the eyes in low

vision. Visual prosthesis and ophthalmic devices recently made

substantial progress, but we are still far from allowing patients

to perceive fine details.232 Consequently, patients have to ad-

apt their everyday life activities, and especially reading, which

is often declared as the most dramatic loss.

Table b.1 Ranges of visual acuity
loss (Source: World Health Organiza-
tion)

Visual Acuity (Snellen scale) Visual Impairment

≥ 20/30 Normal Vision
20/30 to 20/70 Mild Visual Impairment

20/70 to 20/200 Moderate Low Vision
20/200 to 20/500 Severe Low Vision
20/500 to 20/1000 Profound Low Vision

≤ 20/1000 Blindness

Reading speed is currently the most chosen indicator to

measure reading performance for low vision patients. Different

calibrated tools measuring reading speed allow to characterise

precisely the reading deficiency of the patient (see the mnread

test135). In normal vision, reading speed increases with char-

acter print size until a maximum reading speed is reached.134

When thismaximum reading speed is reached, the correspond-

ing character size is called the critical print size (cps). The same

observation is true for lowvisionpatients,137 but thecps is higher,

and the maximum reading speed is less. Thus raising the print
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size only for low vision readers is not sufficient to recover the

”normal vision” maximum reading speed. This is explained by

other limiting factors besides visual acuity in low vision reading

such as the restriction of the visual field (holes and distortions

in the visual field), lateral masking (also called crowding181,182),

fixation instability63 or oculomotor inabilities.48

The complexity of the document (as shown in Fig. b.2) is

also an important limiting factor in low vision reading. The pa-

tient has to extract different paragraphs and pictures and to

read them in a defined order. Reading speed for these docu-

ments is naturally much slower.

■

■ ■ ■

■ The journalGeophysical
ResearchLetterspublished
the studyonApril 26.

■

Scientists remainonthe
lookout fornoveldrugs
that combat radiation
damage.Oneof the
mostpromisingis
CBLB502,made
byClevelandBio-
labs inBuffalo,
N.Y. [see“Sur-
vivingSideEffects”;SciAm,
October2007]. IntheApril11
Science, researchersreport
that thedrug,alsocalledPro-
tectan, enabled87percentof
micetosurvive lethaldosesof
radiation,althoughitworked
onlyif injectedwithinanhour
beforeexposure. (It showed
someprotectiveeffects if

injectedafter exposure tolow-
er levels of radiation.)The
compound,whichcouldbe
given intheevent of anuclear
explosionormeltdown, did
not shieldmalignant cells, so
it couldprotect healthycells
of cancerpatientsunder-
goingradiationtreat-
ment. Thecompany
nowneeds totest the
agent in largenum-
bersof people.
—DavidBiello

■

In1879EdwinHall discov-
eredthatamagnet candef ect
the f owofelectrons, likewind
pushingshipsoff course. In
1980physicistsobservedthe
quantumversion, inwhichthe
appliedmagnetic f eldpushes
electrons indiscrete steps; it is
as if the shipswere responding

TheAntarctic ozonehole that
forms every springhas kept
that continent’s interior cold
evenas the rest of theworld
haswarmedover thepast few
decades [see“APush from
Above”; SciAm,August
2002]. Thanks to theglobal
banonchlorof uorocarbons,
stratosphericozone levels
there are slowly recovering. A

-
ever, couldspeed
Antarctic ice
meltingand
change
weather pat-
terns, accord-
ing toacom-
putermodel by
JudithPerlwitzof
theUniversity
ofColoradoat

repairedhole, how

Ozone warning Antiradiation Quantum Novelty Babbage Computer

Boulder andher colleagues.
Withmoreozone, the lower
stratospherewouldabsorb
moreultraviolet light and
warmupbyasmuchasnine
degreesCelsius. That in turn
wouldbreakdowncircula-
tionpatterns that trapcold
air overAntarctica’s interior,
making the continent heat up.
The changedpatternswould
alsomakeAustraliawarmer
anddrier, andSouthAmerica

couldgetwetter. Such
ozonedetailsmay
needtobe
workedinto
global climate
models,most
ofwhichhave
neither incorpo-
ratedsucheffects

nor included
enoughof the
stratosphere.

Edited by Philip Yam

OZONE HOLE (purple) has
kept Antarctica cold.

Ozone Recovery,
Warmer Antarctica

Quantum Side Step

Protecting Cells
from Radiation

Whatever happened to...?

updates

Title

Sub-title

Sub-title

Sub-title

Image

Image

Caption

Fig. b.2 Illustration of a complex
document layout composed as a set of
titles, paragraphs and images.

b.2 reading aids in low vision

b.2.1 Comparison criteria

Optimal character display As mentioned in the introduction,

textsmust be displayed at a sufficient size to be readwith amax-

imal reading speed. This size can be very high for severe patho-

logies (≥ 2° visual angle for a mean character high) whereas this

cps is about 0.2° for normal vision.134

Many psychophysical studies showed the interest to im-

prove the legibility of a text to increase reading performance.

People with low vision usually read better with white-on-black

text210 and a maximum contrast is necessary for an optimal

reading.197 Astrong variability betweenpatients exists for fonts11

and for background/foreground colours136 in reading speed.133,198

Someexperiments tried todecrease crowding effect between

letters in lowvision reading.These studies tried to increase inter-

letter spacing,57 interline spacing31 or to inverse polarity between

each adjacent letter.58 They showed little (for the interline vari-

ation) or no significant gain on the reading speed.

To summarise, an optimal character display is a high lu-

minance contrast display with a magnified print size superior

to the cps. Other display parameters like colour or font have to

be defined individually for each patient.

Optimal presentation of a text Magnifying a text on a screen

impliesmoving it dynamically because of thewindow-size effect:

a trade-off between the angular size of characters and the field
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size.

Automatic scrollingwas proved to be the fastestway to read

a text on a screen for low vision patients, rather than manual

methods using visual-motor combination to scroll text.100 The

automatic drift mode was also the preferred mode in normal

and lowvision, andnodifferencewas foundbetweenhorizontal

and vertical scroll.39

With the Rapid Serial Visual Presentation (rsvp), eachword

is successively displayed on a screen to limit eye movements

during reading. Exposure time can be constant, length-word

dependant or the patient can decide when to display another

word. rsvp reading speed is as fast as with scroll presentation,

but users usually do not consider rsvp as pleasant.

The local/global navigation problem Acomplexpage layout (see

for example Fig. b.2) introduces a local/global navigation prob-

lem: It is necessary to enlarge one or different local regions of

the document to infer the global layout.

b.2.2 Existing reading aids

In this sectionwe give an overview of themain existing systems

for accessibility. Table b.2 summarises some of the key features.

Note that useful links are available in the electronic version of

this document.

Clearview+ myReader2 ZoomText Jaws Navisio

Printed documents ✓ ✓ — — —
Electronic documents — — ✓ ✓ ✓
Dedicated hardware ✓ ✓ — — —

Audio output — — ✓ ✓ —
Text reformatting — ✓ ✓ — ✓
Automatic scroll — ✓ ✓ — ✓

Local/Global display — — — — ✓

Table b.2 Comparison of typical
existing systems and Navisio. Note that
text reformatting is the possibility to
change the text display more than with
a simple zoom.

Reading aid systems for printed documents These systems are

frequently usedby lowvisionpatientswhowant to readorwrite.

A region of the document is captured by a camera and magni-

fied onto a monitor. One can distinguish two main systems:
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• The closed-circuit television (cctv) magnifiers (such as

Clearview+): cctvmagnifiers display in real-time the cap-

tured image onto amonitor. It is usually possible tomax-

imise the contrast and to select the background and fore-

ground colours. Text can be zoomed up to 60x with a

high-quality display. Portable hand-held magnifiers are

also proposed. As far as reading is concerned, using acctv

magnifier requires combining eyemovementswithmanual

movements to move the magnifier over the text. Thus,

readingwith a cctvmagnifier ismore difficult than read-

ing a static enhanced text. In particular, there is an im-

portant local/global navigation problem with cctv mag-

nifier because of the difficulty for the patient to know

his relative position in a complex document. Jumping to

the next line of a text also takes time: from 17% up to

50% of the total reading time is dedicated to the retrace

time. More details on cctv performance evaluation can

be found in the literature.26,38

• The myReader2 tool: myReader2 is a reformatting system

which scans the document, performs text analysis and re-

cognition (which may take several seconds), and displays

text in anew format (text parameters, scrolling type). This

tool has been tested on low vision patients, and it was

compared with cctv: Its efficiency was proved in terms

of reading speed and reading comfort.101 A special control

panel is also proposed to optimise ergonomics. However

myReader2has some limitations todealwith complexdocuments.180

Reading aid systems for electronic documents Beside the built-

in accessibility features proposed gui, operating systems, nav-

igation engines or edition software (zoommodes byMicrosoft,

pdf accessibility by Adobe, Firefox accessibility features), there

is a wide variety of relevant software available. One can distin-

guish two main systems:

• The computer-screenmagnifier aid: Someparts of the screen

can be enhanced (see, ZoomText or Lunar). The naviga-

tion and the selectionon themonitor are controlled by an
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enhanced and slowed cursor moved thanks to keyboard

or mouse. The text can be zoomed up to 20× and is dis-

playedwith the possibility to customise contrast, colours,

and an anti-aliasing function in most software. Another

interesting feature, for example proposed by ZoomText is

that subjects can read a selected text in a special environ-

ment, so that text is reformatted for easier reading.

• The screen reader aid: Thanks to this processing, blind or

lowvisionpatients can listen todocumentfiles read aloud

by synthetic speech (Jaws,Windows-Eyes or Vocale Presse

for French press).

Usually, reading aid software propose the audio and en-

hanced functionalities and patients can use both modes.

b.3 enhanced reading with navisio

Navisio is an electronic document magnification software. It

was programmed in c++ and it runs onWindows or Linux sys-

tems. The goal of Navisio is to help low vision patients read

simple and complex pdf documents with text and images.Nav-

isiooffers newnavigation possibilities based on two viewmodes

(see Fig. b.3): a document viewand an enhanced view.Thedocu-

ment view corresponds to the global standard view of the doc-

ument, and the enhanced view corresponds to a reformatted

view of a paragraph (or an image) which has been selected in

the document view. The user can easily switch from one view

to the other.

b.3.1 The global document view

In this mode, the raw document is presented with text para-

graphs and images. The user navigates in the document with a

cursor (shape and speed of themouse are adjustable) controlled

by the mouse. The user can zoom on the document before se-

lecting a part with the cursor (see Fig. b.4). Once selected, the

part of the document is displayed in the enhanced view (see

Section b.3.3).
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(a) (b) (c)

Fig. b.3 Navigation between the
document view and the enhanced view.
(a) The patient selects a paragraph in
the document view. (b) This paragraph
is displayed on the enhanced view
according to patient (c) At any time, the
patient can come back to the document
view: the paragraphs just read are
highlighted (red).

(a) (b)

Fig. b.4 Example of document
view: (a) Once the document is opened,
it is shown full page. (b) Then patient
can zoom in and move to focus on
specific parts.
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Navisio proposes a colour code in the document view: Every

paragraph which has been displayed in the enhanced view will

be highlighted with a colour-code. The colour is different if the

paragraphwas just selected or selected previously (see examples

in Fig. b.3 (c) and Fig. b.6 (a)). Thanks to this colour-code, the pa-

tient knows the exact position of the paragraph which was just

read and also knows what remains to be read.

b.3.2 The local enhanced view

In the enhanced mode (see Fig. b.5), the user can magnify a se-

lected paragraph with a large panel of reformatting paramet-

ers, most of which are related to psychophysics results (see Sec-

tion b.2.1). With customisable shortcuts, the user can easily ad-

just the display (font, character size, interline size, background

and fore- ground colours, and other enhancements) or select

the scrolling type (horizontal or vertical). Note that all this per-

sonalised set of parameters can be saved in a configuration file

so that several users can use Navisio and just need to reload

their preferences.

(a) (b) (c) (d)

Fig. b.5 Some features of the
enhanced view: (a) Example of an
enhanced view. (b) Same paragraph
with different display parameters.
(c) The patient then reads the text
scrolling with the mouse (the scrolling
is manual; drift speed can be adjusted).
One automatically reads all subsequent
paragraphs if some have been found
(see Section b.3.3). (d) Some enhance-
ments are also possible such as putting
more relative contrast to the central
line.

If an image instead of a paragraph is selected, the display is

automatically in the maximum resolution (the image can have

been reduced in the raw document) and can also be zoomed.

b.3.3 Document layout analysis with Navisio

Navisio integrates a document layout analysis. Given a pdf doc-

ument, eachparagraph is segmentedbasedon the pdffile struc-

ture, and some relations can be established betweenparagraphs

using simple heuristics. In Fig. b.6, if one selects the paragraph
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at the top of a column, then every paragraphs will be displayed

sequentially (a symbol indicates the change between two para-

graphs).

(a) (b)

Fig. b.6 Layout document analysis
(a) As soon as a paragraph, defined
by the layout analysis, is shown in
the enhanced view, a colour code
will indicate it in the document view.
(b) In general, our document layout
analysis allows the patient to read
continuously different paragraphs
related thanks to heuristics. Thus,
for example, paragraphs in the same
column are shown continuously in the
enhanced view as the patient scrolls
down. More complex transition such as
changing columns are not handled in
this version.

Of course simple heuristics are not sufficient to accurately

dealwith complex document. In order to improve this, one pos-

sibility is to better take into account pdf format structure, as

specified by Adobe (see pdf accessibility by Adobe), as soon as

the filewas properly generated. Another possibility comes from

the computer vision community concerning document layout

analysis.27,119One advantage of the later solution is to allowone

to consider any kind of document, including captured images

of printed document (we refer to Section b.5 for more com-

ments).

b.4 experimental results

This section presents tests with 26 low vision patients. Navisio

was evaluated according to two criteria: reading performance

and reading comfort.

b.4.1 Materials and methods

Subjects 26 low vision patients (from 60 to 92 years old, av-

erage age is 78.2) participated in the tests. Their pathologies

were mainly amd (about 80% of the patients). Their maximum
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reading speed, previously measured thanks to a French read-

ing computer-based test ranged from 23 to 101 (average is 53.35)

words/minute. Most patients had a weak knowledge of com-

puter equipment but some often used electronic magnifiers.

Reading aid systems Subjects used two reading aid systems:

an electronic cctv magnifier (Clearview+) and a computer with

Navisio installed. Note that both systems do not work with the

same input, and that this study is valid for documents which

exist in printed and electronic version, such as newspapers.

Texts and documents To estimate reading speed, one needs

a database of calibrated texts since one cannot use twice the

same text to compare two systems. In order to guarantee that

different texts contained the same complexity and semantic in-

formation, we used the French standardised text database from

Hanhand colleagues.99 In this database, reading speedwas shown

to be equivalent for ten French texts for normal sighted people.

These texts are left justified, and the selected font is Times New

Roman, and they were matched in length (830±2 characters). In

our experiments, we used them to compose two kinds of doc-

uments (simple and complex, see Fig. b.7). Electronic version is

used with Navisio and a printed version is given for the mag-

nifier. Proposed texts correspond to 0.5° of visual angle for a

subject at 40 cm from themonitor and titles correspond to 1.5°.

Fig. b.7 Sample documents
(a) Simple documents: One stand-
ardised text with a title is centred on
the page (b) Complex document: Two
standardised texts are split into 4 para-
graphs and distributed on a page with
titles.

(a) (b)
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Measuring reading performance Oral reading speed for a sub-

ject is measured for both simple and complex documents. If

reading speed was considered as too slow by the orthoptist,

only one standardised text was read in the complex document

case.During the reading phase, eachmisreadwordwasmarked.

Right after the reading phase, three questions were asked to es-

timate the understanding of the subjects for each text. When

the test was finished, subject was asked to give a grade concern-

ing the feeling of comfort for each tool.

Description of protocol Protocol is divided into two sessions.

During the first session (about 30minutes), the subjects learned

how touse both tools and selected theoptimalmagnifying factor

for the magnifier, as well as the best display parameters in the

Navisio software. The distance to the screenwas not fixed. Dur-

ing the second session (about 30minutes), the subject randomly

read simple and complex documents with the magnifier and

with Navisio. For a simple document, the subject read the title

and the text as soon as the page is given. For a complex docu-

ment, the subject had to read two or four titles and texts (out

of the four texts proposed) in a random given order to force the

patient to navigate in the document. Mistakes in the reading

order were marked by the orthoptist. Reading speed was meas-

ured during that session.

b.4.2 Results

Results about reading speed, readingunderstanding,wordsmis-

reading proportion and reading comfort are shown in Fig. b.8.

Fig. b.8 (a) is about reading speed measurements for simple

and complexdocuments in low-visionpatients. It shows anover-

all increase of reading speed by 18.5% for Navisio with simple

documents (close tomyReader2 benefit results101) and 16.5% for

complex documents. Variation is significant with a T-test for

dependent samples in simple document (t=-5.09678, df=25, p=29×10-5)
and in complex document (t=-4.79425, df=25, p=6.4×10-5). Also,
results show that reading a complex document takes 8% longer

than reading a simple document with a cctvmagnifier and 11%

longer with Navisio. It is likely that texts with more complex
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Fig. b.8 Experimental results with
low vision patients (a) reading speed
(words/minute), (b) understanding
evaluation (ratio of correct answers to
the questionnaire), (c) words misread-
ing (percentage), (d) reading comfort
(average grade between 0 and 10). Bars
are 95% confidence interval.

150 aiding low vision patients



structures would have shown a higher reading speed difference

and a better profit ofNavisio’s main purpose: the facilitation of

the local/global navigation.

Fig. b.8 (b) and (c) show thatNavisio also brings a meaning-

ful advantage in terms of understanding (+22% for simple doc-

ument and +23% for complex document) and reading mistakes

(-23% for simple document and -15% for complex document).

Thus for both kinds of documents, Navisio increases reading

performances. For understanding, variation is significantwith a

T-test for dependent samples in simple document (t=2.241040,

df=25, p=0.034146) and in complex document (t=2.331032, df=25,

p=0.028113). For readingmistakes, variation is significantwith a

T-test for dependent samples in simple document (t=-5.40062,

df=25, p=1.3×10-5) and in complex document (t=-5.12989, df=25,

p=2.7×10-5).
Fig. b.8 (d) shows the most significant difference between

Navisio and the cctv magnifier: the reading comfort. Navisio

was given an average grade of 8.65/10 for the simple document

and 8.85/10 for the complex document, while for the cctvmag-

nifier it was 6.73/10 respectively 6.46/10. Variation is significant

with a T-test for dependent samples in simple document (t=-

5.95238, df=25, p=3×10-6) and in complex document (t=-6.70751,

df=25, p=10-6). The reading comfort proposed by Navisio is its

most important interest, especially for complexdocument read-

ing. Finally,when thepatientswere askedwhich tool theywould

prefer to use at home if they had the possibility to have the same

printed and electronic document, 85% of the patients answered

they would prefer Navisio. If we do not take into account pa-

tients who often use a cctv magnifier, this percentage is about

96%. Interestingly, Navisio was a really appreciated reading aid

system, even by patients not used to navigate on amonitorwith

a mouse. These results prove the interest for such a high para-

metrisable electronic document reader with local/global navig-

ation.

b.5 conclusion and perspectives

In this chapter, we described the new Navisio software which

main goal is to help low vision patients read complex docu-
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ments. Themain feature is to enable a smoothnavigationbetween

a global document view and a local customizable view to read

an electronic document (here a pdf file). We showed how the

local view parametrisation is related to recent psychophysical

results on reading performance.Navisiowas evaluatedwith low

vision patients and compared with a classical cctv magnifier

tool. Our tests revealed the efficiency of Navisio to read simple

and complex electronic documents: Reading speed and com-

fort were significantly enhanced.

Of course, Navisio is intended to evolve and include more

functionalities. Among forthcoming extensions that we con-

sider, let us mention the addition of an audio support, further

features to facilitate navigation and the possibility to select the

rsvp in the enhanced mode.

Beside the realisation of this software, the goal was to in-

tegrate in a software existing and novel ideas to help low vis-

ion patients to read any kinds of electronic documents, and to

have those ideas justified from the psychophysics point of view.

The principles introduced here could be easily extended and

applied to any kind of electronic documents, such as e-books

for example, as soon as devices allow the human/machine in-

teractions.

A step further, the important evolutionwhichwould highly

benefit fromrecent advances in the computer vision community,

is the possibility tohandle anykindof text, such as hand-written

texts or texts captured by a camera (similarly tomyReader2). The

crucial step is to have a robust document layout analysis,27,119

in order to identify each component of a text, determine the

logical structure of the paragraphs and perform optical char-

acter recognition (ocr). Much progress has been achieved but,

to our knowledge, having a fully robust approach remains an

open question. Such a pre-processingwas tested in this context

of low vision223 but processing times and robustness remain an

issue before integrating the ocr chain in a system (this is one

weakness of myReader2). gpu-performance may help for pro-

cessing times butnewmethodsmay also be required to improve

robustness.

Finally, using an eye tracker system223 with high frequency
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performance is a challenging perspective. Such a system would

allow to adapt the display in the enhanced view depending on

the fixation. This could help to suppress the difficult mouse

navigation task present in most of the reading aid tool.129 Real

time text deformations could also be useful tomove the text on

optimal health zones of the retina, but this is still a very difficult

problem to validate such feature fromapsychophysical point of

view.
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